These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 3098170)
1. Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation. Beaman TC; Gerhardt P Appl Environ Microbiol; 1986 Dec; 52(6):1242-6. PubMed ID: 3098170 [TBL] [Abstract][Full Text] [Related]
2. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio. Beaman TC; Greenamyre JT; Corner TR; Pankratz HS; Gerhardt P J Bacteriol; 1982 May; 150(2):870-7. PubMed ID: 6802802 [TBL] [Abstract][Full Text] [Related]
3. Protoplast dehydration correlated with heat resistance of bacterial spores. Nakashio S; Gerhardt P J Bacteriol; 1985 May; 162(2):571-8. PubMed ID: 3988704 [TBL] [Abstract][Full Text] [Related]
4. Low heat resistance of Bacillus sphaericus spores correlated with high protoplast water content. Beaman TC; Pankratz HS; Gerhardt P FEMS Microbiol Lett; 1989 Mar; 49(1):1-4. PubMed ID: 2721920 [TBL] [Abstract][Full Text] [Related]
5. Spore heat resistance and specific mineralization. Bender GR; Marquis RE Appl Environ Microbiol; 1985 Dec; 50(6):1414-21. PubMed ID: 3937495 [TBL] [Abstract][Full Text] [Related]
6. Protoplast water content of bacterial spores determined by buoyant density sedimentation. Lindsay JA; Beaman TC; Gerhardt P J Bacteriol; 1985 Aug; 163(2):735-7. PubMed ID: 4019413 [TBL] [Abstract][Full Text] [Related]
7. Wet and dry density of Bacillus anthracis and other Bacillus species. Carrera M; Zandomeni RO; Sagripanti JL J Appl Microbiol; 2008 Jul; 105(1):68-77. PubMed ID: 18298528 [TBL] [Abstract][Full Text] [Related]
8. Bacillus spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex. Rao L; Liao X; Setlow P Lett Appl Microbiol; 2016 Oct; 63(4):247-53. PubMed ID: 27424522 [TBL] [Abstract][Full Text] [Related]
9. Strong and consistently synergistic inactivation of spores of spoilage-associated Bacillus and Geobacillus spp. by high pressure and heat compared with inactivation by heat alone. Olivier SA; Bull MK; Stone G; van Diepenbeek RJ; Kormelink F; Jacops L; Chapman B Appl Environ Microbiol; 2011 Apr; 77(7):2317-24. PubMed ID: 21278265 [TBL] [Abstract][Full Text] [Related]
10. Effect of sporulation and recovery medium on the heat resistance and amount of injury of spores from spoilage bacilli. Cazemier AE; Wagenaars SF; ter Steeg PF J Appl Microbiol; 2001 May; 90(5):761-70. PubMed ID: 11348437 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. van Bokhorst-van de Veen H; Xie H; Esveld E; Abee T; Mastwijk H; Nierop Groot M Food Microbiol; 2015 Feb; 45(Pt A):26-33. PubMed ID: 25481059 [TBL] [Abstract][Full Text] [Related]
12. The application of laser diffractometry to study the water content of spores of Bacillus sphaericus with different heat resistances. De Pieri LA; Ludlow IK; Waites WM J Appl Bacteriol; 1993 May; 74(5):578-82. PubMed ID: 8486564 [TBL] [Abstract][Full Text] [Related]
13. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions. Mtimet N; Trunet C; Mathot AG; Venaille L; Leguérinel I; Coroller L; Couvert O Food Microbiol; 2016 Jun; 56():87-95. PubMed ID: 26919821 [TBL] [Abstract][Full Text] [Related]
14. Osmotically induced increase in thermal resistance of heat-sensitive, dipicolinic acid-less spores of Bacillus cereus Ht-8. Bhothipaksa K; Busta FF Appl Environ Microbiol; 1978 Apr; 35(4):800-8. PubMed ID: 417675 [TBL] [Abstract][Full Text] [Related]
15. Bacterial metabolites from intra- and inter-species influencing thermotolerance: the case of Bacillus cereus and Geobacillus stearothermophilus. Gómez-Govea MA; García S; Heredia N Folia Microbiol (Praha); 2017 May; 62(3):183-189. PubMed ID: 27896600 [TBL] [Abstract][Full Text] [Related]
16. Effect of media on spore yield and thermal resistance of Bacillus stearothermophilus. Penna TC; Machoshvili IA; Ishii M Appl Biochem Biotechnol; 2003; 105 -108():287-94. PubMed ID: 12721452 [TBL] [Abstract][Full Text] [Related]
17. Thermal resistance of Bacillus stearothermophilus spores on strips previously treated with calcium. Penna TC; Machoshvili IA; Taqueda ME PDA J Pharm Sci Technol; 1996; 50(4):227-37. PubMed ID: 8810838 [TBL] [Abstract][Full Text] [Related]
18. Effects of sporulation pH on the heat resistance and the sporulation of Bacillus cereus. Mazas M; López M; González I; Bernardo A; Martín R Lett Appl Microbiol; 1997 Nov; 25(5):331-4. PubMed ID: 9418067 [TBL] [Abstract][Full Text] [Related]
19. The effect of air on the moist-heat resistance of Bacillus stearothermophilus spores. Scruton MW J Hosp Infect; 1989 Nov; 14(4):339-50. PubMed ID: 2575633 [TBL] [Abstract][Full Text] [Related]
20. Some microbiological aspects of inedible rendering processes. Hansen PI; Olgaard K Zentralbl Bakteriol Mikrobiol Hyg B; 1984 Dec; 180(1):3-20. PubMed ID: 6441385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]