These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 30981934)
1. Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii. Yang G; Hadioui M; Wang Q; Wilkinson KJ Environ Pollut; 2019 Jul; 250():40-46. PubMed ID: 30981934 [TBL] [Abstract][Full Text] [Related]
2. Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii - Bioavailability of small organic complexes and role of hardness ions. Yang G; Wilkinson KJ Environ Pollut; 2018 Dec; 243(Pt A):263-269. PubMed ID: 30189390 [TBL] [Abstract][Full Text] [Related]
3. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM. François L; Fortin C; Campbell PG Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821 [TBL] [Abstract][Full Text] [Related]
4. The role of complexation and competition in the biouptake of europium by a unicellular alga. Yang G; Tan QG; Zhu L; Wilkinson KJ Environ Toxicol Chem; 2014 Nov; 33(11):2609-15. PubMed ID: 25132226 [TBL] [Abstract][Full Text] [Related]
5. The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above: possible role of hydroxo-species. Crémazy A; Campbell PG; Fortin C Environ Sci Technol; 2013 Mar; 47(5):2408-15. PubMed ID: 23360212 [TBL] [Abstract][Full Text] [Related]
6. Biotic ligand model does not predict the bioavailability of rare Earth elements in the presence of organic ligands. Zhao CM; Wilkinson KJ Environ Sci Technol; 2015 Feb; 49(4):2207-14. PubMed ID: 25611881 [TBL] [Abstract][Full Text] [Related]
7. Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. El-Akl P; Smith S; Wilkinson KJ Environ Toxicol Chem; 2015 Aug; 34(8):1711-9. PubMed ID: 25772589 [TBL] [Abstract][Full Text] [Related]
8. Biotic ligand model explains the effects of competition but not complexation for Sm biouptake by Chlamydomonas reinhardtii. Tan QG; Yang G; Wilkinson KJ Chemosphere; 2017 Feb; 168():426-434. PubMed ID: 27810543 [TBL] [Abstract][Full Text] [Related]
9. Role of Cu and pb on Ni bioaccumulation by Chlamydomonas reinhardtii: Validation of the biotic ligand model in binary metal Mixtures. Flouty R; Khalaf G Ecotoxicol Environ Saf; 2015 Mar; 113():79-86. PubMed ID: 25483376 [TBL] [Abstract][Full Text] [Related]
10. Ni uptake by a green alga. 2. Validation of equilibrium models for competition effects. Worms IA; Wilkinson KJ Environ Sci Technol; 2007 Jun; 41(12):4264-70. PubMed ID: 17626423 [TBL] [Abstract][Full Text] [Related]
11. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper. Chen Z; Zhu L; Wilkinson KJ Environ Sci Technol; 2010 May; 44(9):3580-6. PubMed ID: 20384345 [TBL] [Abstract][Full Text] [Related]
12. Competition Among Trivalent Elements (Al, Eu, Fe, Gd, Nd, Tm, and Y) for Uptake in Algae and Applicability of the Biotic Ligand Model. Aharchaou I; Bahloul F; Fortin C Arch Environ Contam Toxicol; 2021 Nov; 81(4):612-620. PubMed ID: 33219836 [TBL] [Abstract][Full Text] [Related]
13. Determination of the speciation and bioavailability of samarium to Chlamydomonas reinhardtii in the presence of natural organic matter. Rowell JA; Fillion MA; Smith S; Wilkinson KJ Environ Toxicol Chem; 2018 Jun; 37(6):1623-1631. PubMed ID: 29396990 [TBL] [Abstract][Full Text] [Related]
14. Metal-phytoplankton interactions: modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake. Fortin C; Denison FH; Garnier-Laplace J Environ Toxicol Chem; 2007 Feb; 26(2):242-8. PubMed ID: 17713211 [TBL] [Abstract][Full Text] [Related]
15. Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga. Lavoie M; Campbell PG; Fortin C Environ Sci Technol; 2012 Nov; 46(21):12129-36. PubMed ID: 23030358 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Worms I; Simon DF; Hassler CS; Wilkinson KJ Biochimie; 2006 Nov; 88(11):1721-31. PubMed ID: 17049417 [TBL] [Abstract][Full Text] [Related]
17. Uranium accumulation and toxicity in the green alga Chlamydomonas reinhardtii is modulated by pH. Lavoie M; Sabatier S; Garnier-Laplace J; Fortin C Environ Toxicol Chem; 2014 Jun; 33(6):1372-9. PubMed ID: 24596137 [TBL] [Abstract][Full Text] [Related]
18. The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y Gong B; He E; Qiu H; Li J; Ji J; Peijnenburg WJGM; Liu Y; Zhao L; Cao X Environ Pollut; 2019 Jul; 250():456-463. PubMed ID: 31026692 [TBL] [Abstract][Full Text] [Related]
19. Natural organic matter (NOM) can increase the uptake fluxes of three critical metals (Ga, La, Pt) in a unicellular green alga. Hourtané O; Smith DS; Fortin C Chemosphere; 2024 Oct; 365():143311. PubMed ID: 39265737 [TBL] [Abstract][Full Text] [Related]
20. Cadmium uptake by a green alga can be predicted by equilibrium modelling. Kola H; Wilkinson KJ Environ Sci Technol; 2005 May; 39(9):3040-7. PubMed ID: 15926550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]