These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 30982194)
1. Responses of carbonic anhydrases and Rubisco to abrupt CO Zeng X; Jin P; Zou D; Liu Y; Xia J Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194 [TBL] [Abstract][Full Text] [Related]
2. Unicellular C4 photosynthesis in a marine diatom. Reinfelder JR; Kraepiel AM; Morel FM Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177 [TBL] [Abstract][Full Text] [Related]
3. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472 [TBL] [Abstract][Full Text] [Related]
4. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Kikutani S; Nakajima K; Nagasato C; Tsuji Y; Miyatake A; Matsuda Y Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9828-33. PubMed ID: 27531955 [TBL] [Abstract][Full Text] [Related]
5. Ocean acidification modulates expression of genes and physiological performance of a marine diatom. Li Y; Zhuang S; Wu Y; Ren H; Chen F; Lin X; Wang K; Beardall J; Gao K PLoS One; 2017; 12(2):e0170970. PubMed ID: 28192486 [TBL] [Abstract][Full Text] [Related]
6. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2. Shimakawa G; Okuyama A; Harada H; Nakagaito S; Toyoshima Y; Nagata K; Matsuda Y Plant Physiol; 2023 Nov; 193(4):2298-2305. PubMed ID: 37625790 [TBL] [Abstract][Full Text] [Related]
7. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells. Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545 [TBL] [Abstract][Full Text] [Related]
8. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. Tsuji Y; Nakajima K; Matsuda Y J Exp Bot; 2017 Jun; 68(14):3763-3772. PubMed ID: 28633304 [TBL] [Abstract][Full Text] [Related]
9. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Alterio V; Langella E; De Simone G; Monti SM Mar Drugs; 2015 Mar; 13(4):1688-97. PubMed ID: 25815892 [TBL] [Abstract][Full Text] [Related]
10. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Matsuda Y; Nakajima K; Tachibana M Photosynth Res; 2011 Sep; 109(1-3):191-203. PubMed ID: 21287273 [TBL] [Abstract][Full Text] [Related]
11. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms. Young JN; Hopkinson BM J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158 [TBL] [Abstract][Full Text] [Related]
12. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259 [TBL] [Abstract][Full Text] [Related]
13. The physiology and genetics of CO2 concentrating mechanisms in model diatoms. Hopkinson BM; Dupont CL; Matsuda Y Curr Opin Plant Biol; 2016 Jun; 31():51-7. PubMed ID: 27055267 [TBL] [Abstract][Full Text] [Related]
14. The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario. Shang Y; He J; Qiu J; Hu S; Wang X; Zhang T; Wang W; Yuan X; Xu J; Li F Mar Environ Res; 2024 Apr; 196():106425. PubMed ID: 38442592 [TBL] [Abstract][Full Text] [Related]
15. Physiological Responses of a Model Marine Diatom to Fast pH Changes: Special Implications of Coastal Water Acidification. Wu Y; Beardall J; Gao K PLoS One; 2015; 10(10):e0141163. PubMed ID: 26496125 [TBL] [Abstract][Full Text] [Related]
16. Effects of HCO Fan W; Liu Y; Xu X; Dong X; Wang H Plant Physiol Biochem; 2024 Apr; 209():108530. PubMed ID: 38520966 [TBL] [Abstract][Full Text] [Related]
17. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Young JN; Heureux AM; Sharwood RE; Rickaby RE; Morel FM; Whitney SM J Exp Bot; 2016 May; 67(11):3445-56. PubMed ID: 27129950 [TBL] [Abstract][Full Text] [Related]
18. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. Clement R; Dimnet L; Maberly SC; Gontero B New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678 [TBL] [Abstract][Full Text] [Related]
19. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. Tsuji Y; Mahardika A; Matsuda Y J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591 [TBL] [Abstract][Full Text] [Related]
20. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Reinfelder JR Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]