These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes. Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973 [TBL] [Abstract][Full Text] [Related]
24. Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Fu Y; Westenbroek RE; Scheuer T; Catterall WA Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16598-603. PubMed ID: 25368181 [TBL] [Abstract][Full Text] [Related]
25. Dynamic protein kinase a activities induced by beta-adrenoceptors dictate signaling propagation for substrate phosphorylation and myocyte contraction. Soto D; De Arcangelis V; Zhang J; Xiang Y Circ Res; 2009 Mar; 104(6):770-9. PubMed ID: 19213958 [TBL] [Abstract][Full Text] [Related]
26. Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Zhang X; Szeto C; Gao E; Tang M; Jin J; Fu Q; Makarewich C; Ai X; Li Y; Tang A; Wang J; Gao H; Wang F; Ge XJ; Kunapuli SP; Zhou L; Zeng C; Xiang KY; Chen X Circ Res; 2013 Feb; 112(3):498-509. PubMed ID: 23104882 [TBL] [Abstract][Full Text] [Related]
27. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. Gresham KS; Stelzer JE J Physiol; 2016 Feb; 594(3):669-86. PubMed ID: 26635197 [TBL] [Abstract][Full Text] [Related]
28. β-Adrenergic stimulation increases Cav3.1 activity in cardiac myocytes through protein kinase A. Li Y; Wang F; Zhang X; Qi Z; Tang M; Szeto C; Li Y; Zhang H; Chen X PLoS One; 2012; 7(7):e39965. PubMed ID: 22808078 [TBL] [Abstract][Full Text] [Related]
29. Phosphorylation of phospholamban and troponin I in beta-adrenergic-induced acceleration of cardiac relaxation. Li L; Desantiago J; Chu G; Kranias EG; Bers DM Am J Physiol Heart Circ Physiol; 2000 Mar; 278(3):H769-79. PubMed ID: 10710345 [TBL] [Abstract][Full Text] [Related]
30. The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca Bovo E; Huke S; Blatter LA; Zima AV J Mol Cell Cardiol; 2017 Mar; 104():9-16. PubMed ID: 28131630 [TBL] [Abstract][Full Text] [Related]
31. Beta-adrenergic signaling accelerates and synchronizes cardiac ryanodine receptor response to a single L-type Ca2+ channel. Zhou P; Zhao YT; Guo YB; Xu SM; Bai SH; Lakatta EG; Cheng H; Hao XM; Wang SQ Proc Natl Acad Sci U S A; 2009 Oct; 106(42):18028-33. PubMed ID: 19815510 [TBL] [Abstract][Full Text] [Related]
32. Calcium/Calmodulin Protein Kinase II-Dependent Ryanodine Receptor Phosphorylation Mediates Cardiac Contractile Dysfunction Associated With Sepsis. Sepúlveda M; Gonano LA; Viotti M; Morell M; Blanco P; López Alarcón M; Peroba Ramos I; Bastos Carvalho A; Medei E; Vila Petroff M Crit Care Med; 2017 Apr; 45(4):e399-e408. PubMed ID: 27648519 [TBL] [Abstract][Full Text] [Related]
33. Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity. Tang M; Zhang X; Li Y; Guan Y; Ai X; Szeto C; Nakayama H; Zhang H; Ge S; Molkentin JD; Houser SR; Chen X Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H519-28. PubMed ID: 20543081 [TBL] [Abstract][Full Text] [Related]
34. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653 [TBL] [Abstract][Full Text] [Related]
35. Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Benkusky NA; Weber CS; Scherman JA; Farrell EF; Hacker TA; John MC; Powers PA; Valdivia HH Circ Res; 2007 Oct; 101(8):819-29. PubMed ID: 17717301 [TBL] [Abstract][Full Text] [Related]
36. β-Adrenergic induced SR Ca Pereira L; Bare DJ; Galice S; Shannon TR; Bers DM J Mol Cell Cardiol; 2017 Jul; 108():8-16. PubMed ID: 28476660 [TBL] [Abstract][Full Text] [Related]
37. AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Fink MA; Zakhary DR; Mackey JA; Desnoyer RW; Apperson-Hansen C; Damron DS; Bond M Circ Res; 2001 Feb; 88(3):291-7. PubMed ID: 11179196 [TBL] [Abstract][Full Text] [Related]
38. Cardiac G-protein-coupled receptor kinase 2 ablation induces a novel Ca2+ handling phenotype resistant to adverse alterations and remodeling after myocardial infarction. Raake PW; Zhang X; Vinge LE; Brinks H; Gao E; Jaleel N; Li Y; Tang M; Most P; Dorn GW; Houser SR; Katus HA; Chen X; Koch WJ Circulation; 2012 May; 125(17):2108-18. PubMed ID: 22496128 [TBL] [Abstract][Full Text] [Related]
39. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes. Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781 [TBL] [Abstract][Full Text] [Related]
40. AMPK Attenuation of β-Adrenergic Receptor-Induced Cardiac Injury via Phosphorylation of β-Arrestin-1-ser330. Zhao M; Cao N; Gu H; Xu J; Xu W; Zhang D; Wei TW; Wang K; Guo R; Cui H; Wang X; Guo X; Li Z; He K; Li Z; Zhang Y; Shyy JY; Dong E; Xiao H Circ Res; 2024 Aug; 135(6):651-667. PubMed ID: 39082138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]