These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30982455)

  • 1. Surface phase transitions in ice: from fundamental interactions to applications.
    Wettlaufer JS
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180261. PubMed ID: 30982455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mushy-layer growth and convection, with application to sea ice.
    Wells AJ; Hitchen JR; Parkinson JRG
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180165. PubMed ID: 30982459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of ice and snow.
    Warren SG
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180161. PubMed ID: 30982450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing key features in the formation of ice and gas hydrate systems.
    Liang S; Hall KW; Laaksonen A; Zhang Z; Kusalik PG
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180167. PubMed ID: 30982452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural characterization of snow, firn and ice.
    Baker I
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180162. PubMed ID: 30982454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice-binding proteins and the applicability and limitations of the kinetic pinning model.
    Chasnitsky M; Braslavsky I
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180391. PubMed ID: 30982449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal-plane-dependent effects of antifreeze glycoprotein impurity for ice growth dynamics.
    Furukawa Y; Nagashima K; Nakatsubo S; Zepeda S; Murata KI; Sazaki G
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180393. PubMed ID: 30982456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray studies of the transformation from high- to low-density amorphous water.
    Mariedahl D; Perakis F; Späh A; Pathak H; Kim KH; Benmore C; Nilsson A; Amann-Winkel K
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180164. PubMed ID: 30982458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice: the paradigm of wild plasticity.
    Weiss J
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180260. PubMed ID: 30982451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt- and gas-filled ices under planetary conditions.
    Bove LE; Ranieri U
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180262. PubMed ID: 30982457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles at fluid interfaces.
    Bresme F; Oettel M
    J Phys Condens Matter; 2007 Oct; 19(41):413101. PubMed ID: 28192311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hard-body models of bulk liquid crystals.
    Mederos L; Velasco E; Martínez-Ratón Y
    J Phys Condens Matter; 2014 Nov; 26(46):463101. PubMed ID: 25335432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive model for ice formation on superhydrophobic surfaces.
    Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T
    Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is Water at the Graphite Interface Vapor-like or Ice-like?
    Qiu Y; Lupi L; Molinero V
    J Phys Chem B; 2018 Apr; 122(13):3626-3634. PubMed ID: 29298058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic model of quasiliquid formation on H2O ice: comparison with experiment.
    Henson BF; Voss LF; Wilson KR; Robinson JM
    J Chem Phys; 2005 Oct; 123(14):144707. PubMed ID: 16238416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial undercooling in solidification of colloidal suspensions: analyses with quantitative measurements.
    You J; Wang L; Wang Z; Li J; Wang J; Lin X; Huang W
    Sci Rep; 2016 Jun; 6():28434. PubMed ID: 27329394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation of ice and its management in ecosystems.
    Franks F
    Philos Trans A Math Phys Eng Sci; 2003 Mar; 361(1804):557-74; discussion 574. PubMed ID: 12662454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of 2-dimensional ices on different surfaces near room temperature without confinement.
    Zhu C; Gao Y; Zhu W; Jiang J; Liu J; Wang J; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):16723-16728. PubMed ID: 31375634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.