These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30982483)
1. Transglycosylated starch accelerated intestinal transit and enhanced bacterial fermentation in the large intestine using a pig model. Metzler-Zebeli BU; Newman MA; Ladinig A; Kandler W; Grüll D; Zebeli Q Br J Nutr; 2019 Jul; 122(1):1-13. PubMed ID: 30982483 [TBL] [Abstract][Full Text] [Related]
2. Transglycosylated Starch Modulates the Gut Microbiome and Expression of Genes Related to Lipid Synthesis in Liver and Adipose Tissue of Pigs. Newman MA; Petri RM; Grüll D; Zebeli Q; Metzler-Zebeli BU Front Microbiol; 2018; 9():224. PubMed ID: 29487593 [TBL] [Abstract][Full Text] [Related]
3. Functional adaptations in the cecal and colonic metagenomes associated with the consumption of transglycosylated starch in a pig model. Metzler-Zebeli BU; Newman MA; Grüll D; Zebeli Q BMC Microbiol; 2019 May; 19(1):87. PubMed ID: 31046662 [TBL] [Abstract][Full Text] [Related]
4. Consumption of transglycosylated starch down-regulates expression of mucosal innate immune response genes in the large intestine using a pig model. Metzler-Zebeli BU; Newman MA; Grüll D; Zebeli Q Br J Nutr; 2018 Jun; 119(12):1366-1377. PubMed ID: 29845906 [TBL] [Abstract][Full Text] [Related]
5. Enzymatically Modified Starch Favorably Modulated Intestinal Transit Time and Hindgut Fermentation in Growing Pigs. Newman MA; Zebeli Q; Velde K; Grüll D; Molnar T; Kandler W; Metzler-Zebeli BU PLoS One; 2016; 11(12):e0167784. PubMed ID: 27936165 [TBL] [Abstract][Full Text] [Related]
6. High Amylose Starch with Low In Vitro Digestibility Stimulates Hindgut Fermentation and Has a Bifidogenic Effect in Weaned Pigs. Fouhse JM; Gänzle MG; Regmi PR; van Kempen TA; Zijlstra RT J Nutr; 2015 Nov; 145(11):2464-70. PubMed ID: 26377761 [TBL] [Abstract][Full Text] [Related]
7. Whole-Grain Starch and Fiber Composition Modifies Ileal Flow of Nutrients and Nutrient Availability in the Hindgut, Shifting Fecal Microbial Profiles in Pigs. Fouhse JM; Gänzle MG; Beattie AD; Vasanthan T; Zijlstra RT J Nutr; 2017 Nov; 147(11):2031-2040. PubMed ID: 28954838 [No Abstract] [Full Text] [Related]
8. Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs. Metzler-Zebeli BU; Canibe N; Montagne L; Freire J; Bosi P; Prates JAM; Tanghe S; Trevisi P Animal; 2019 Jan; 13(1):64-73. PubMed ID: 29745350 [TBL] [Abstract][Full Text] [Related]
9. Flaxseed meal and oat hulls supplementation: impact on predicted production and absorption of volatile fatty acids and energy from hindgut fermentation in growing pigs. Ndou SP; Kiarie E; Nyachoti CM J Anim Sci; 2019 Jan; 97(1):302-314. PubMed ID: 30321361 [TBL] [Abstract][Full Text] [Related]
10. Ileal and hindgut fermentation in the growing pig fed a human-type diet. Hoogeveen AME; Moughan PJ; de Haas ES; Blatchford P; McNabb WC; Montoya CA Br J Nutr; 2020 Sep; 124(6):567-576. PubMed ID: 32312334 [TBL] [Abstract][Full Text] [Related]
11. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs. Zijlstra RT; Jha R; Woodward AD; Fouhse J; van Kempen TA J Anim Sci; 2012 Dec; 90 Suppl 4():49-58. PubMed ID: 23365281 [TBL] [Abstract][Full Text] [Related]
12. Sorghum tannin extract impedes in vitro digestibility and fermentability of nutrients in the simulated porcine gastrointestinal tract. Pan L; Feng S; Li W; Zhu W J Anim Sci; 2023 Jan; 101():. PubMed ID: 37100756 [TBL] [Abstract][Full Text] [Related]
14. Response of gastrointestinal fermentative activity and colonic microbiota to protected sodium butyrate and protected sodium heptanoate in weaned piglets challenged with ETEC F4 López-Colom P; Castillejos L; Barba-Vidal E; Zhu Y; Puyalto M; Mallo JJ; Martín-Orúe SM Arch Anim Nutr; 2019 Oct; 73(5):339-359. PubMed ID: 31342760 [TBL] [Abstract][Full Text] [Related]
15. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. Owusu-Asiedu A; Patience JF; Laarveld B; Van Kessel AG; Simmins PH; Zijlstra RT J Anim Sci; 2006 Apr; 84(4):843-52. PubMed ID: 16543561 [TBL] [Abstract][Full Text] [Related]
16. Type of Dietary Fiber Is Associated with Changes in Ileal and Hindgut Microbial Communities in Growing Pigs and Influences In Vitro Ileal and Hindgut Fermentation. Hoogeveen AME; Moughan PJ; Henare SJ; Schulze P; McNabb WC; Montoya CA J Nutr; 2021 Oct; 151(10):2976-2985. PubMed ID: 34320183 [TBL] [Abstract][Full Text] [Related]
17. Kiwifruit fibre level influences the predicted production and absorption of SCFA in the hindgut of growing pigs using a combined in vivo-in vitro digestion methodology. Montoya CA; Rutherfurd SM; Moughan PJ Br J Nutr; 2016 Apr; 115(8):1317-24. PubMed ID: 26277926 [TBL] [Abstract][Full Text] [Related]
18. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Ivarsson E; Roos S; Liu HY; Lindberg JE Animal; 2014 Nov; 8(11):1777-87. PubMed ID: 25046106 [TBL] [Abstract][Full Text] [Related]
19. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. Anguita M; Canibe N; Pérez JF; Jensen BB J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578 [TBL] [Abstract][Full Text] [Related]
20. Effect of graded levels of fiber from alfalfa meal on intestinal nutrient and energy flow, and hindgut fermentation in growing pigs. Chen L; Zhang HF; Gao LX; Zhao F; Lu QP; Sa RN J Anim Sci; 2013 Oct; 91(10):4757-64. PubMed ID: 23965393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]