These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3098250)

  • 1. Participation of microsomal electron transport systems in nicotine metabolism by livers of guinea pigs.
    Nakayama H; Nakashima T; Kurogochi Y
    Biochem Pharmacol; 1986 Dec; 35(23):4343-5. PubMed ID: 3098250
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytochrome P-450-dependent nicotine oxidation by liver microsomes of guinea pigs. Immunochemical evidence with antibody against phenobarbital-inducible cytochrome P-450.
    Nakayama H; Nakashima T; Kurogochi Y
    Biochem Pharmacol; 1985 Jul; 34(13):2281-6. PubMed ID: 4015676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of two major nicotine metabolites in livers of guinea pigs.
    Nakayama H; Fujihara S; Nakashima T; Kurogochi Y
    Biochem Pharmacol; 1987 Dec; 36(24):4313-7. PubMed ID: 3120736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Participation of cytochrome P-450 in nicotine oxidation.
    Nakayama H; Nakashima T; Kurogochi Y
    Biochem Biophys Res Commun; 1982 Sep; 108(1):200-5. PubMed ID: 6816226
    [No Abstract]   [Full Text] [Related]  

  • 5. Interaction between microsomal electron transfer pathways.
    Schenkman JB; Jansson I
    Adv Exp Med Biol; 1975; 58(00):387-404. PubMed ID: 239542
    [No Abstract]   [Full Text] [Related]  

  • 6. [Induced modification of liver NADPH-cytochrome P-450 activity and II microsomal electron transport chain as a function of age in rats].
    Plewka A; Kamiński M; Plewka D
    Postepy Hig Med Dosw; 1994; 48(5):631-44. PubMed ID: 7638105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of microsomal electron transport components from control, phenobarbital- and 3-methylcholanthrene-treated mice. II. Improved resolution and quantitation of major components in ammonium sulfate fractions from total liver microsomes.
    Mull RH; Schgaguler M; Mönig H; Voigt T; Flemming K
    Biochim Biophys Acta; 1977 Dec; 462(3):671-88. PubMed ID: 202308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microsomal electron transport components from control, phenobarbital, and 3-methylcholanthrene treated mice: I. Distribution of electron transport components in ammonium-sulfate fractions from mouse liver microsomes.
    Mull RH; Voigt T; Flemming K
    Biochem Biophys Res Commun; 1975 Jan; 64(3):1098-106. PubMed ID: 807209
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of polyamine on microsomal cytochrome P-450 stimulation of rate and improved coupling of NADPH oxidation to hydroxylation.
    Andersson KK; Dalet C; Bonfils C; Maurel P
    Biochem Biophys Res Commun; 1981 Jan; 98(1):311-6. PubMed ID: 6783042
    [No Abstract]   [Full Text] [Related]  

  • 11. Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats.
    Ekström G; Cronholm T; Ingelman-Sundberg M
    Biochem J; 1986 Feb; 233(3):755-61. PubMed ID: 3085654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Participation of the redox chain of rat liver microsomes in tightening the ring of 1,4-benzdiazepines].
    Bogatskiĭ AV; Golovenko NIa; Andronati SA; Kolomeĭchenko GIu; Zhilina ZI
    Dokl Akad Nauk SSSR; 1977; 234(1):215-8. PubMed ID: 407063
    [No Abstract]   [Full Text] [Related]  

  • 13. Dissociation of microsomal ethanol oxidation from cytochrome P-450 catalyzed drug metabolism.
    Vatsis KP; Schulman MP
    Adv Exp Med Biol; 1975; 58(00):369-82. PubMed ID: 239541
    [No Abstract]   [Full Text] [Related]  

  • 14. Trapping of reactive intermediates by incorporation of 14C-sodium cyanide during microsomal oxidation.
    Gorrod JW; Whittlesea CM; Lam SP
    Adv Exp Med Biol; 1991; 283():657-64. PubMed ID: 1906229
    [No Abstract]   [Full Text] [Related]  

  • 15. Characteristics of two classes of azo dye reductase activity associated with rat liver microsomal cytochrome P450.
    Zbaida S; Levine WG
    Biochem Pharmacol; 1990 Dec; 40(11):2415-23. PubMed ID: 2125221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic drug metabolism and lipid peroxidation in thiamine deficient rats.
    Galdhar NR; Pawar SS
    Int J Vitam Nutr Res; 1976; 46(1):14-23. PubMed ID: 816749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of hamster liver nicotine metabolism--II. Differential effects of ethanol or phenobarbital pretreatment on microsomal N and C oxidation.
    McCoy GD; DeMarco GJ
    Biochem Pharmacol; 1986 Dec; 35(24):4590-2. PubMed ID: 3790173
    [No Abstract]   [Full Text] [Related]  

  • 18. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450.
    Goeptar AR; te Koppele JM; van Maanen JM; Zoetemelk CE; Vermeulen NP
    Biochem Pharmacol; 1992 Jan; 43(2):343-52. PubMed ID: 1310854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transport of electrons from mitochondria to microsomes in the reconstituted system of cell organelles].
    Chistiakov VV; Pospelova LN
    Biokhimiia; 1982 Jan; 47(1):55-61. PubMed ID: 6802189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of highly purified cytochrome P-450 and other components of the mixed function oxidase system of liver microsomal membranes.
    Coon MJ; van der Hoeven A; Haugen DA; Guengerich FP; Vermilion JL; Ballou DP
    Adv Exp Med Biol; 1975; 58(00):25-46. PubMed ID: 168750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.