BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30982663)

  • 1. Mechanically Distinct Microtubule Arrays Determine the Length and Force Response of the Meiotic Spindle.
    Takagi J; Sakamoto R; Shiratsuchi G; Maeda YT; Shimamoto Y
    Dev Cell; 2019 Apr; 49(2):267-278.e5. PubMed ID: 30982663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the micromechanics of the cell division apparatus.
    Shimamoto Y; Kapoor TM
    Methods Cell Biol; 2018; 145():173-190. PubMed ID: 29957203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the micromechanical properties of the metaphase spindle.
    Shimamoto Y; Maeda YT; Ishiwata S; Libchaber AJ; Kapoor TM
    Cell; 2011 Jun; 145(7):1062-74. PubMed ID: 21703450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle.
    Yang G; Cameron LA; Maddox PS; Salmon ED; Danuser G
    J Cell Biol; 2008 Aug; 182(4):631-9. PubMed ID: 18710922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active forces shape the metaphase spindle through a mechanical instability.
    Oriola D; Jülicher F; Brugués J
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16154-16159. PubMed ID: 32601228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles.
    Uteng M; Hentrich C; Miura K; Bieling P; Surrey T
    J Cell Biol; 2008 Aug; 182(4):715-26. PubMed ID: 18710923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational model predicts Xenopus meiotic spindle organization.
    Loughlin R; Heald R; Nédélec F
    J Cell Biol; 2010 Dec; 191(7):1239-49. PubMed ID: 21173114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lamin B counteracts the kinesin Eg5 to restrain spindle pole separation during spindle assembly.
    Goodman B; Channels W; Qiu M; Iglesias P; Yang G; Zheng Y
    J Biol Chem; 2010 Nov; 285(45):35238-44. PubMed ID: 20826821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles.
    Gaetz J; Kapoor TM
    J Cell Biol; 2004 Aug; 166(4):465-71. PubMed ID: 15314063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules.
    Shimamoto Y; Forth S; Kapoor TM
    Dev Cell; 2015 Sep; 34(6):669-81. PubMed ID: 26418296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles.
    Miyamoto DT; Perlman ZE; Burbank KS; Groen AC; Mitchison TJ
    J Cell Biol; 2004 Dec; 167(5):813-8. PubMed ID: 15583027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle.
    Houghtaling BR; Yang G; Matov A; Danuser G; Kapoor TM
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15338-43. PubMed ID: 19706424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14.
    Hentrich C; Surrey T
    J Cell Biol; 2010 May; 189(3):465-80. PubMed ID: 20439998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XMAP215, XKCM1, NuMA, and cytoplasmic dynein are required for the assembly and organization of the transient microtubule array during the maturation of Xenopus oocytes.
    Becker BE; Romney SJ; Gard DL
    Dev Biol; 2003 Sep; 261(2):488-505. PubMed ID: 14499655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinesin-5: A Team Is Just the Sum of Its Parts.
    Hueschen CL; Long AF; Dumont S
    Dev Cell; 2015 Sep; 34(6):609-10. PubMed ID: 26418291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.
    Takagi J; Itabashi T; Suzuki K; Ishiwata S
    Sci Rep; 2013 Sep; 3():2808. PubMed ID: 24077015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force on spindle microtubule minus ends moves chromosomes.
    Elting MW; Hueschen CL; Udy DB; Dumont S
    J Cell Biol; 2014 Jul; 206(2):245-56. PubMed ID: 25023517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining how the spatial organization of chromatin signals influences metaphase spindle assembly.
    Gaetz J; Gueroui Z; Libchaber A; Kapoor TM
    Nat Cell Biol; 2006 Sep; 8(9):924-32. PubMed ID: 16892054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity.
    Walczak CE; Vernos I; Mitchison TJ; Karsenti E; Heald R
    Curr Biol; 1998 Jul 30-Aug 13; 8(16):903-13. PubMed ID: 9707401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and function of poleward flux in Xenopus extract meiotic spindles.
    Mitchison TJ
    Philos Trans R Soc Lond B Biol Sci; 2005 Mar; 360(1455):623-9. PubMed ID: 15897184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.