BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 30982889)

  • 21. CRISPR/Cas9-Mediated miR-29b Editing as a Treatment of Different Types of Muscle Atrophy in Mice.
    Li J; Wang L; Hua X; Tang H; Chen R; Yang T; Das S; Xiao J
    Mol Ther; 2020 May; 28(5):1359-1372. PubMed ID: 32222157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic switch to minimize CRISPR off-target effects by self-restricting Cas9 transcription and translation.
    Shen CC; Hsu MN; Chang CW; Lin MW; Hwu JR; Tu Y; Hu YC
    Nucleic Acids Res; 2019 Feb; 47(3):e13. PubMed ID: 30462300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA.
    Zhang Y; Ling X; Su X; Zhang S; Wang J; Zhang P; Feng W; Zhu YY; Liu T; Tang X
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20895-20899. PubMed ID: 33448579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool.
    Wang XW; Hu LF; Hao J; Liao LQ; Chiu YT; Shi M; Wang Y
    Nat Cell Biol; 2019 Apr; 21(4):522-530. PubMed ID: 30804503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in
    Muramoto T; Iriki H; Watanabe J; Kawata T
    Cells; 2019 Jan; 8(1):. PubMed ID: 30642074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides.
    Ding X; Seebeck T; Feng Y; Jiang Y; Davis GD; Chen F
    CRISPR J; 2019 Feb; 2():51-63. PubMed ID: 31021236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the AcrIIC1 anti‒CRISPR protein for Cas9‒based genome engineering in E. coli.
    Trasanidou D; Potocnik A; Barendse P; Mohanraju P; Bouzetos E; Karpouzis E; Desmet A; van Kranenburg R; van der Oost J; Staals RHJ; Mougiakos I
    Commun Biol; 2023 Oct; 6(1):1042. PubMed ID: 37833505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing.
    Chen X; Chen Y; Xin H; Wan T; Ping Y
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2395-2405. PubMed ID: 31941712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of a novel HEK293 luciferase reporter cell line by CRISPR/Cas9-mediated site-specific integration in the genome to explore the transcriptional regulation of the PGRN gene.
    Li Y; Li S; Li Y; Xia H; Mao Q
    Bioengineered; 2019 Dec; 10(1):98-107. PubMed ID: 31023186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling Genome-Wide Specificity of CRISPR-Cas9 Using Digenome-Seq.
    Kim D; Kim JS
    Methods Mol Biol; 2021; 2162():233-242. PubMed ID: 32926386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein Inhibitors of CRISPR-Cas9.
    Bondy-Denomy J
    ACS Chem Biol; 2018 Feb; 13(2):417-423. PubMed ID: 29251498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunogold Labeling to Detect
    Ulloa-Navas MJ; García-Tárraga P; García-Verdugo JM; Herranz-Pérez V
    CRISPR J; 2019 Dec; 2(6):395-405. PubMed ID: 31860352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells.
    Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH
    Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potent CRISPR-Cas9 inhibitors from
    Watters KE; Shivram H; Fellmann C; Lew RJ; McMahon B; Doudna JA
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6531-6539. PubMed ID: 32156733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs.
    Kurata JS; Lin RJ
    RNA; 2018 Jul; 24(7):966-981. PubMed ID: 29720387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of Cas9 level for efficient CRISPR-Cas9-mediated chromosomal and plasmid gene deletion in Bacillus thuringiensis.
    Soonsanga S; Luxananil P; Promdonkoy B
    Biotechnol Lett; 2020 Apr; 42(4):625-632. PubMed ID: 31960185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.