BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30982891)

  • 1. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection.
    Tamer YT; Gaszek IK; Abdizadeh H; Batur TA; Reynolds KA; Atilgan AR; Atilgan C; Toprak E
    Mol Biol Evol; 2019 Jul; 36(7):1533-1550. PubMed ID: 30982891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical principles predict fitness landscapes of drug resistance.
    Rodrigues JV; Bershtein S; Li A; Lozovsky ER; Hartl DL; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):E1470-8. PubMed ID: 26929328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Contingent Phenotypes of Lon Protease Deficiency in Escherichia coli upon Antibiotic Challenge.
    Matange N
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31740490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A trimethoprim derivative impedes antibiotic resistance evolution.
    Manna MS; Tamer YT; Gaszek I; Poulides N; Ahmed A; Wang X; Toprak FCR; Woodard DR; Koh AY; Williams NS; Borek D; Atilgan AR; Hulleman JD; Atilgan C; Tambar U; Toprak E
    Nat Commun; 2021 May; 12(1):2949. PubMed ID: 34011959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydrofolate reductase gene as a versatile expression marker.
    Iwakura M; Tanaka T
    J Biochem; 1992 Jan; 111(1):31-6. PubMed ID: 1607361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trade-offs with stability modulate innate and mutationally acquired drug resistance in bacterial dihydrofolate reductase enzymes.
    Matange N; Bodkhe S; Patel M; Shah P
    Biochem J; 2018 Jun; 475(12):2107-2125. PubMed ID: 29871875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring protein fitness landscapes from laboratory evolution experiments.
    D'Costa S; Hinds EC; Freschlin CR; Song H; Romero PA
    PLoS Comput Biol; 2023 Mar; 19(3):e1010956. PubMed ID: 36857380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimethoprim resistance of dihydrofolate reductase variants from clinical isolates of Pneumocystis jirovecii.
    Queener SF; Cody V; Pace J; Torkelson P; Gangjee A
    Antimicrob Agents Chemother; 2013 Oct; 57(10):4990-8. PubMed ID: 23896474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rugged yet easily navigable fitness landscape.
    Papkou A; Garcia-Pastor L; Escudero JA; Wagner A
    Science; 2023 Nov; 382(6673):eadh3860. PubMed ID: 37995212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A second-site mutation at phenylalanine-137 that increases catalytic efficiency in the mutant aspartate-27----serine Escherichia coli dihydrofolate reductase.
    Howell EE; Booth C; Farnum M; Kraut J; Warren MS
    Biochemistry; 1990 Sep; 29(37):8561-9. PubMed ID: 2271539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of the type I and type II DHFR genes in trimethoprim-resistant urinary isolates of Escherichia coli from Greece.
    Tsakris A; Johnson AP; Legakis NJ; Tzouvelekis LS
    J Antimicrob Chemother; 1993 May; 31(5):665-71. PubMed ID: 8392996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening libraries for improved solubility: using E. coli dihydrofolate reductase as a reporter.
    Liu JW; Ollis DL
    Methods Mol Biol; 2013; 978():229-36. PubMed ID: 23423901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens.
    Krucinska J; Lombardo MN; Erlandsen H; Estrada A; Si D; Viswanathan K; Wright DL
    Commun Biol; 2022 May; 5(1):459. PubMed ID: 35562546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the gene for chromosomal trimethoprim-sensitive dihydrofolate reductase of Staphylococcus aureus ATCC 25923.
    Dale GE; Then RL; Stüber D
    Antimicrob Agents Chemother; 1993 Jul; 37(7):1400-5. PubMed ID: 8363365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and structural characterization of dihydrofolate reductase from Streptococcus pneumoniae.
    Lee J; Yennawar NH; Gam J; Benkovic SJ
    Biochemistry; 2010 Jan; 49(1):195-206. PubMed ID: 19950924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim.
    Thillet J; Absil J; Stone SR; Pictet R
    J Biol Chem; 1988 Sep; 263(25):12500-8. PubMed ID: 3045118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appearance of a new trimethoprim resistance gene, dhfrIX, in Escherichia coli from swine.
    Jansson C; Sköld O
    Antimicrob Agents Chemother; 1991 Sep; 35(9):1891-9. PubMed ID: 1659308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the Molecular Mechanism of Trimethoprim Resistance in Listeria monocytogenes.
    Korsak D; Krawczyk-Balska A
    Foodborne Pathog Dis; 2017 Dec; 14(12):696-700. PubMed ID: 28910155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.