BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30982956)

  • 1. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity.
    Straub CT; Khatibi PA; Otten JK; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2019 Aug; 116(8):1901-1908. PubMed ID: 30982956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii.
    Basen M; Rhaesa AM; Kataeva I; Prybol CJ; Scott IM; Poole FL; Adams MW
    Bioresour Technol; 2014; 152():384-92. PubMed ID: 24316482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source.
    Rubinstein GM; Lipscomb GL; Williams-Rhaesa AM; Schut GJ; Kelly RM; Adams MWW
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):585-597. PubMed ID: 32783103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the lignocellulose-degrading bacterium
    Straub CT; Bing RG; Wang JP; Chiang VL; Adams MWW; Kelly RM
    Biotechnol Biofuels; 2020; 13():43. PubMed ID: 32180826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile
    Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW
    mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii.
    Straub CT; Khatibi PA; Wang JP; Conway JM; Williams-Rhaesa AM; Peszlen IM; Chiang VL; Adams MWW; Kelly RM
    Nat Commun; 2019 Aug; 10(1):3548. PubMed ID: 31391460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose.
    Straub CT; Bing RG; Otten JK; Keller LM; Zeldes BM; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2020 Dec; 117(12):3799-3808. PubMed ID: 32770740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis.
    Bing RG; Straub CT; Sulis DB; Wang JP; Adams MWW; Kelly RM
    Bioresour Technol; 2022 Mar; 348():126780. PubMed ID: 35093526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment.
    Paye JM; Guseva A; Hammer SK; Gjersing E; Davis MF; Davison BH; Olstad J; Donohoe BS; Nguyen TY; Wyman CE; Pattathil S; Hahn MG; Lynd LR
    Biotechnol Biofuels; 2016; 9():8. PubMed ID: 26759604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.
    Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
    Laemthong T; Bing RG; Crosby JR; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Oct; 88(20):e0127422. PubMed ID: 36169328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii.
    Laemthong T; Bing RG; Crosby JR; Manesh MJH; Adams MWW; Kelly RM
    Extremophiles; 2023 Feb; 27(1):6. PubMed ID: 36802247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Declining carbohydrate solubilization with increasing solids loading during fermentation of cellulosic feedstocks by Clostridium thermocellum: documentation and diagnostic tests.
    Kubis MR; Holwerda EK; Lynd LR
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):12. PubMed ID: 35418299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism.
    Khan AMAM; Hauk VJ; Ibrahim M; Raffel TR; Blumer-Schuette SE
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32086304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.
    Chung D; Cha M; Guss AM; Westpheling J
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8931-6. PubMed ID: 24889625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach.
    Yee KL; Rodriguez M; Tschaplinski TJ; Engle NL; Martin MZ; Fu C; Wang ZY; Hamilton-Brehm SD; Mielenz JR
    Biotechnol Biofuels; 2012 Nov; 5(1):81. PubMed ID: 23146305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.