These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 30983336)

  • 41. Sulfur-doped graphene for efficient electrocatalytic N
    Xia L; Yang J; Wang H; Zhao R; Chen H; Fang W; Asiri AM; Xie F; Cui G; Sun X
    Chem Commun (Camb); 2019 Mar; 55(23):3371-3374. PubMed ID: 30816888
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Artificial N
    Zhao L; Zhao J; Zhao J; Zhang L; Wu D; Wang H; Li J; Ren X; Wei Q
    Nanotechnology; 2020 May; 31(29):29LT01. PubMed ID: 32191924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ambient electrochemical N
    Wu D; Wang H; Huang H; Zhang R; Ji L; Chen H; Luo Y; You J; Tang D; Zhang Z; Sun X
    Chem Commun (Camb); 2019 Jul; 55(52):7546-7549. PubMed ID: 31188371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ambient Electrosynthesis of Ammonia on a Core-Shell-Structured Au@CeO
    Liu G; Cui Z; Han M; Zhang S; Zhao C; Chen C; Wang G; Zhang H
    Chemistry; 2019 Apr; 25(23):5904-5911. PubMed ID: 30767346
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulating the Active Sites of Oxygen-Deficient TiO
    Utomo WP; Wu H; Ng YH
    Small; 2022 Jun; 18(25):e2200996. PubMed ID: 35460186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N
    Xie H; Geng Q; Li X; Wang T; Luo Y; Alshehri AA; Alzahrani KA; Li B; Wang Z; Mao J
    Chem Commun (Camb); 2019 Sep; 55(72):10717-10720. PubMed ID: 31429442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interface and defect engineer of titanium dioxide supported palladium or platinum for tuning the activity and selectivity of electrocatalytic nitrogen reduction reaction.
    Lv J; Tian Z; Dai K; Ye Y; Liang C
    J Colloid Interface Sci; 2019 Oct; 553():126-135. PubMed ID: 31202049
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amorphous/Crystalline Hetero-Phase TiO
    Qiu W; Luo YX; Liang RP; Qiu JD
    Chemistry; 2020 Aug; 26(45):10226-10229. PubMed ID: 32227370
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Porous Two-dimensional Iron-Cyano Nanosheets for High-rate Electrochemical Nitrate Reduction.
    Fang Z; Jin Z; Tang S; Li P; Wu P; Yu G
    ACS Nano; 2022 Jan; 16(1):1072-1081. PubMed ID: 34919376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical N
    Ren X; Cui G; Chen L; Xie F; Wei Q; Tian Z; Sun X
    Chem Commun (Camb); 2018 Jul; 54(61):8474-8477. PubMed ID: 30003198
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanostructured Bromide-Derived Ag Film: An Efficient Electrocatalyst for N
    Ji L; Shi X; Asiri AM; Zheng B; Sun X
    Inorg Chem; 2018 Dec; 57(23):14692-14697. PubMed ID: 30427664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Molybdenum Doping on the Enhanced Electrocatalytic Nitrogen Reduction Reaction Performance of CeO
    Nan C; Yang H; Gao F; Gao N; Zhou W; Du H; Liang Z
    Chempluschem; 2023 Mar; 88(3):e202300023. PubMed ID: 36861491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia.
    Wang H; Yu H; Wang Z; Li Y; Xu Y; Li X; Xue H; Wang L
    Small; 2019 Feb; 15(6):e1804769. PubMed ID: 30637929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Boosting electrocatalytic N
    Zhu X; Liu Z; Wang H; Zhao R; Chen H; Wang T; Wang F; Luo Y; Wu Y; Sun X
    Chem Commun (Camb); 2019 Apr; 55(27):3987-3990. PubMed ID: 30882131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-efficiency electrocatalyst for N
    Li Y; Yan P; Chen J; Ren Y; Zhou Y; Ge T; Chen J; Xu Q
    Chem Commun (Camb); 2019 Oct; 55(88):13307-13310. PubMed ID: 31626252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulating the Oxidation State of Titanium via Dual Anions Substitution for Efficient N
    Li Q; Fang C; Yang Z; Yu B; Takabatake M; Motokura K; Sun X; Yang Y
    Small; 2022 Jun; 18(25):e2201343. PubMed ID: 35608317
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Performance Electrocatalytic Conversion of N
    Xu X; Sun B; Liang Z; Cui H; Tian J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26060-26067. PubMed ID: 32419447
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst.
    Qiu W; Xie XY; Qiu J; Fang WH; Liang R; Ren X; Ji X; Cui G; Asiri AM; Cui G; Tang B; Sun X
    Nat Commun; 2018 Aug; 9(1):3485. PubMed ID: 30154483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.