BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30983343)

  • 1. Using Caffeine and Free Amino Acids To Enhance the Transepithelial Transport of Catechins in Caco-2 Cells.
    Wang Y; Zuo Y; Deng S; Zhu F; Liu Q; Wang R; Li T; Cai H; Wan X; Xie Z; Xie Z; Li D
    J Agric Food Chem; 2019 May; 67(19):5477-5485. PubMed ID: 30983343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers.
    Ai Z; Liu S; Qu F; Zhang H; Chen Y; Ni D
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30917581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence or absence of a gallate moiety on catechins affects their cellular transport.
    Kadowaki M; Sugihara N; Tagashira T; Terao K; Furuno K
    J Pharm Pharmacol; 2008 Sep; 60(9):1189-95. PubMed ID: 18718123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidrug resistance-associated protein 2 (MRP2) is an efflux transporter of EGCG and its metabolites in the human small intestine.
    Kikuchi T; Hayashi A; Ikeda N; Morita O; Tasaki J
    J Nutr Biochem; 2022 Sep; 107():109071. PubMed ID: 35636688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model.
    Chan KY; Zhang L; Zuo Z
    J Pharm Pharmacol; 2007 Mar; 59(3):395-400. PubMed ID: 17331343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.
    Ishizu T; Tsutsumi H; Sato T
    Chem Pharm Bull (Tokyo); 2016; 64(7):676-86. PubMed ID: 27373623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary electrophoretic determination of theanine, caffeine, and catechins in fresh tea leaves and oolong tea and their effects on rat neurosphere adhesion and migration.
    Chen CN; Liang CM; Lai JR; Tsai YJ; Tsay JS; Lin JK
    J Agric Food Chem; 2003 Dec; 51(25):7495-503. PubMed ID: 14640605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model.
    Zhang L; Zheng Y; Chow MS; Zuo Z
    Int J Pharm; 2004 Dec; 287(1-2):1-12. PubMed ID: 15541906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Catechins and Their Related Compounds on Cellular Accumulation and Efflux Transport of Mitoxantrone in Caco-2 Cell Monolayers.
    Sugihara N; Kuroda N; Watanabe F; Choshi T; Kamishikiryo J; Seo M
    J Food Sci; 2017 May; 82(5):1224-1230. PubMed ID: 28346686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Bioconversion of Gallated Catechins and Flavonol Glycosides on Bioaccessibility and Intestinal Cellular Uptake of Catechins.
    Choi EH; Rha CS; Balusamy SR; Kim DO; Shim SM
    J Agric Food Chem; 2019 Feb; 67(8):2331-2339. PubMed ID: 30767525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate.
    Tagashira T; Choshi T; Hibino S; Kamishikiryou J; Sugihara N
    J Food Sci; 2012 Oct; 77(10):H208-15. PubMed ID: 22938538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins.
    Chung JH; Kim S; Lee SJ; Chung JO; Oh YJ; Shim SM
    J Food Sci; 2013 May; 78(5):C685-90. PubMed ID: 23551173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2.
    Vaidyanathan JB; Walle T
    J Pharmacol Exp Ther; 2003 Nov; 307(2):745-52. PubMed ID: 12970388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of some selected catechins and caffeine in green tea by high performance liquid chromatography.
    El-Shahawi MS; Hamza A; Bahaffi SO; Al-Sibaai AA; Abduljabbar TN
    Food Chem; 2012 Oct; 134(4):2268-75. PubMed ID: 23442685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells.
    Kitagawa S; Nabekura T; Kamiyama S
    J Pharm Pharmacol; 2004 Aug; 56(8):1001-5. PubMed ID: 15285844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiated Caco-2 cell monolayers exhibit adaptation in the transport and metabolism of flavan-3-ols with chronic exposure to both isolated flavan-3-ols and enriched extracts.
    Redan BW; Chegeni M; Ferruzzi MG
    Food Funct; 2017 Jan; 8(1):111-121. PubMed ID: 27808339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption and pharmacokinetics of green tea catechins in beagles.
    Mata-Bilbao Mde L; Andrés-Lacueva C; Roura E; Jáuregui O; Escribano E; Torre C; Lamuela-Raventós RM
    Br J Nutr; 2008 Sep; 100(3):496-502. PubMed ID: 18205995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2.
    Vaidyanathan JB; Walle T
    Pharm Res; 2001 Oct; 18(10):1420-5. PubMed ID: 11697467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer.
    Liang G; Tang A; Lin X; Li L; Zhang S; Huang Z; Tang H; Li QQ
    Int J Oncol; 2010 Jul; 37(1):111-23. PubMed ID: 20514403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes.
    Ueda M; Furuyashiki T; Yamada K; Aoki Y; Sakane I; Fukuda I; Yoshida K; Ashida H
    Food Funct; 2010 Nov; 1(2):167-73. PubMed ID: 21776468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.