BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30983351)

  • 1. Increased Methylmercury Accumulation in Rice after Straw Amendment.
    Tang W; Hintelmann H; Gu B; Feng X; Liu Y; Gao Y; Zhao J; Zhu H; Lei P; Zhong H
    Environ Sci Technol; 2019 Jun; 53(11):6144-6153. PubMed ID: 30983351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice root exudates affect microbial methylmercury production in paddy soils.
    Zhao JY; Ye ZH; Zhong H
    Environ Pollut; 2018 Nov; 242(Pt B):1921-1929. PubMed ID: 30072222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic fertilizer amendment increases methylmercury accumulation in rice plants.
    Li Y; He X; Wang Y; Guan J; Guo J; Xu B; Chen YH; Wang G
    Chemosphere; 2020 Jun; 249():126166. PubMed ID: 32062560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylmercury production in a paddy soil and its uptake by rice plants as affected by different geochemical mercury pools.
    Liu J; Wang J; Ning Y; Yang S; Wang P; Shaheen SM; Feng X; Rinklebe J
    Environ Int; 2019 Aug; 129():461-469. PubMed ID: 31154148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of rice straw amendment on mercury methylation and nitrification in paddy soils.
    Liu YR; Dong JX; Han LL; Zheng YM; He JZ
    Environ Pollut; 2016 Feb; 209():53-9. PubMed ID: 26629646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of mercury methylation in soil and methylmercury accumulation in rice by dissolved organic matter derived from sulfur-rich rape straw.
    Zheng Z; Hu J; He T; Liu C; Zhou X; Yin D
    Environ Pollut; 2024 Apr; 346():123657. PubMed ID: 38428787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?
    Li Y; Zhao J; Zhong H; Wang Y; Li H; Li YF; Liem-Nguyen V; Jiang T; Zhang Z; Gao Y; Chai Z
    Environ Sci Technol; 2019 Feb; 53(4):1844-1852. PubMed ID: 30636405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.
    Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D
    Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury and methylmercury in Hg-contaminated paddy soil and their uptake in rice as regulated by DOM from different agricultural sources.
    Yang N; Hu J; Yin D; He T; Tian X; Ran S; Zhou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77181-77192. PubMed ID: 37249779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overlooked Role of Putative Non-Hg Methylators in Predicting Methylmercury Production in Paddy Soils.
    Liu YR; Yang Z; Zhou X; Qu X; Li Z; Zhong H
    Environ Sci Technol; 2019 Nov; 53(21):12330-12338. PubMed ID: 31603332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of biogeochemical controls on the formation, uptake and accumulation of methylmercury in rice paddies in the vicinity of a coal-fired power plant and a municipal solid waste incinerator in Taiwan.
    Su YB; Chang WC; Hsi HC; Lin CC
    Chemosphere; 2016 Jul; 154():375-384. PubMed ID: 27070857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochar amendment mitigates the health risks of dietary methylmercury exposure from rice consumption in mercury-contaminated areas.
    Wang Y; Sun Y; He T; Deng H; Wang Z; Wang J; Zheng X; Zhou L; Zhong H
    Environ Pollut; 2020 Dec; 267():115547. PubMed ID: 33254602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.).
    Wang Y; Chen L; Chen Y; Xue Y; Liu G; Zheng X; Zhou L; Zhong H
    Sci Total Environ; 2023 May; 874():162459. PubMed ID: 36871735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice.
    Hu H; Xi B; Tan W
    Environ Pollut; 2021 Oct; 286():117290. PubMed ID: 33984776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging rice straw reduces the bioavailability of mercury and methylmercury in paddy soil.
    He Y; Yang X; Li Z; Wang T; Ma C; Wen X; Chen W; Zhang C
    Chemosphere; 2023 Oct; 339():139711. PubMed ID: 37536532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).
    Zhou J; Liu H; Du B; Shang L; Yang J; Wang Y
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6144-54. PubMed ID: 25398217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.