These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30983456)

  • 21. Stability of Kinect for range of motion analysis in static stretching exercises.
    Mortazavi F; Nadian-Ghomsheh A
    PLoS One; 2018; 13(7):e0200992. PubMed ID: 30040848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reference values of spatiotemporal parameters, joint angles, ground reaction forces, and plantar pressure distribution during normal gait in young women.
    Fryzowicz A; Murawa M; Kabaciński J; Rzepnicka A; Dworak LB
    Acta Bioeng Biomech; 2018; 20(1):49-57. PubMed ID: 29658524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.
    Eltoukhy M; Oh J; Kuenze C; Signorile J
    Gait Posture; 2017 Jan; 51():77-83. PubMed ID: 27721202
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the Accuracy of the Azure Kinect and Kinect v2.
    Kurillo G; Hemingway E; Cheng ML; Cheng L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal Gait Measurement With a Side-View Depth Sensor Using Human Joint Proposals.
    Hynes A; Czarnuch S; Kirkland MC; Ploughman M
    IEEE J Biomed Health Inform; 2021 May; 25(5):1758-1769. PubMed ID: 32946402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. System for automatic gait analysis based on a single RGB-D camera.
    Rocha AP; Choupina HMP; Vilas-Boas MDC; Fernandes JM; Cunha JPS
    PLoS One; 2018; 13(8):e0201728. PubMed ID: 30075023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system].
    Xu G; Chen K; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Apr; 40(2):350-357. PubMed ID: 37139768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy evaluation of the Kinect v2 sensor during dynamic movements in a rehabilitation scenario.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Longhi S; Romeo L; Russi SN; Verdini F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5409-5412. PubMed ID: 28269481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate estimation of joint motion trajectories for rehabilitation using Kinect.
    Sinha S; Bhowmick B; Sinha A; Das A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3864-3867. PubMed ID: 29060741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinect v2 tracked Body Joint Smoothing for Kinematic Analysis in Musculoskeletal Disorders.
    Mangal NK; Tiwari AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5769-5772. PubMed ID: 33019285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.
    Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S
    Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SU-E-I-92: Accuracy Evaluation of Depth Data in Microsoft Kinect.
    Kozono K; Aoki M; Ono M; Kamikawa Y; Arimura H; Toyofuku F
    Med Phys; 2012 Jun; 39(6Part5):3646. PubMed ID: 28517624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy.
    Ma Y; Mithraratne K; Wilson NC; Wang X; Ma Y; Zhang Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
    Chang R; Rodrigues PA; Van Emmerik RE; Hamill J
    J Biomech; 2014 Aug; 47(11):2571-7. PubMed ID: 24992816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on Tripping Risks in Fast Walking through Cadence-Controlled Gait Analysis.
    Wang WF; Lien WC; Liu CY; Yang CY
    J Healthc Eng; 2018; 2018():2723178. PubMed ID: 30002803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Automatic recognition and analysis of hemiplegia gait].
    Zhu Y; Xu W; Wang R; Tong Y; Lu W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):306-314. PubMed ID: 31016949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of joint moments following foot contact across two force plates.
    Wong AY; Sangeux M; Baker R
    Gait Posture; 2010 Feb; 31(2):292-3. PubMed ID: 20005718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinect as a tool for gait analysis: validation of a real-time joint extraction algorithm working in side view.
    Cippitelli E; Gasparrini S; Spinsante S; Gambi E
    Sensors (Basel); 2015 Jan; 15(1):1417-34. PubMed ID: 25594588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of ground reaction forces for Parkinson's disease patients using a kinect-driven musculoskeletal gait analysis model.
    Eltoukhy M; Kuenze C; Andersen MS; Oh J; Signorile J
    Med Eng Phys; 2017 Dec; 50():75-82. PubMed ID: 29102274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.