These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 30983953)

  • 41. Postoperative Acute-Phase Gait Training Using Hybrid Assistive Limb Improves Gait Ataxia in a Patient with Intradural Spinal Cord Compression Due to Spinal Tumors.
    Soma Y; Kubota S; Kadone H; Shimizu Y; Hada Y; Koda M; Sankai Y; Yamazaki M
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557027
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gait training with Hybrid Assistive Limb enhances the gait functions in subacute stroke patients: A pilot study.
    Yoshikawa K; Mizukami M; Kawamoto H; Sano A; Koseki K; Sano K; Asakawa Y; Kohno Y; Nakai K; Gosho M; Tsurushima H
    NeuroRehabilitation; 2017; 40(1):87-97. PubMed ID: 27814305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke.
    Wall A; Borg J; Vreede K; Palmcrantz S
    PLoS One; 2020; 15(2):e0229707. PubMed ID: 32109255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effectiveness of Acute Phase Hybrid Assistive Limb Rehabilitation in Stroke Patients Classified by Paralysis Severity.
    Fukuda H; Samura K; Hamada O; Saita K; Ogata T; Shiota E; Sankai Y; Inoue T
    Neurol Med Chir (Tokyo); 2015; 55(6):487-92. PubMed ID: 26041627
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Consecutive 25-Week Program of Gait Training, Using the Alternating Hybrid Assistive Limb (HAL
    Kanazawa A; Yoshikawa K; Koseki K; Takeuchi R; Mutsuzaki H
    Medicina (Kaunas); 2019 Nov; 55(11):. PubMed ID: 31752225
    [No Abstract]   [Full Text] [Related]  

  • 46. Effect of functional electrical stimulation plus body weight-supported treadmill training for gait rehabilitation in patients with poststroke: a retrospective case-matched study.
    Bao X; Luo JN; Shao YC; Tang ZQ; Liu HY; Liu H; Tan JW
    Eur J Phys Rehabil Med; 2020 Feb; 56(1):34-40. PubMed ID: 31615194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of locomotor training after incomplete spinal cord injury: a systematic review.
    Morawietz C; Moffat F
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2297-308. PubMed ID: 23850614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hybrid Assistive Limb Functional Treatment for a Patient with Chronic Incomplete Cervical Spinal Cord Injury.
    Soma Y; Kubota S; Kadone H; Shimizu Y; Takahashi H; Hada Y; Koda M; Sankai Y; Yamazaki M
    Int Med Case Rep J; 2021; 14():413-420. PubMed ID: 34188556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of different percentages of body weight-supported treadmill training in Parkinson’s disease: a double-blind randomized controlled trial.
    Atan T; Özyemişci Taşkıran Ö; Bora Tokçaer A; Kaymak Karataş G; Karakuş Çalışkan A; Karaoğlan B
    Turk J Med Sci; 2019 Aug; 49(4):999-1007. PubMed ID: 31292107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of treadmill walking combined with obstacle-crossing on walking ability in ambulatory patients after stroke: a pilot randomized controlled trial.
    Jeong YG; Koo JW
    Top Stroke Rehabil; 2016 Dec; 23(6):406-412. PubMed ID: 27207495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of robotic-assisted gait training on physical capacity, and quality of life among chronic stroke patients: A randomized controlled study.
    Elmas Bodur B; Erdoğanoğlu Y; Asena Sel S
    J Clin Neurosci; 2024 Feb; 120():129-137. PubMed ID: 38241771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of overground gait training with 'Mobility Assisted Robotic System-MARS' on gait parameters in patients with stroke: a pre-post study.
    Gupta A; Prakash NB; Sannyasi G; Mohamad F; Honavar P; Jotheeswaran S; Khanna M; Ramakrishnan S
    BMC Neurol; 2023 Aug; 23(1):296. PubMed ID: 37558991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait Training with Robotic Exoskeleton Assisted Rehabilitation System in Patients with Incomplete Traumatic and Non-Traumatic Spinal Cord Injury: A Pilot Study and Review of Literature.
    Gupta A; Prakash NB; Honavar PR
    Ann Indian Acad Neurol; 2023 Jan; 26(Suppl 1):S26-S31. PubMed ID: 37092019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cybernic treatment with wearable cyborg Hybrid Assistive Limb (HAL) improves ambulatory function in patients with slowly progressive rare neuromuscular diseases: a multicentre, randomised, controlled crossover trial for efficacy and safety (NCY-3001).
    Nakajima T; Sankai Y; Takata S; Kobayashi Y; Ando Y; Nakagawa M; Saito T; Saito K; Ishida C; Tamaoka A; Saotome T; Ikai T; Endo H; Ishii K; Morita M; Maeno T; Komai K; Ikeda T; Ishikawa Y; Maeshima S; Aoki M; Ito M; Mima T; Miura T; Matsuda J; Kawaguchi Y; Hayashi T; Shingu M; Kawamoto H
    Orphanet J Rare Dis; 2021 Jul; 16(1):304. PubMed ID: 34233722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.
    Chang SH; Afzal T; ; Berliner J; Francisco GE
    Pilot Feasibility Stud; 2018; 4():62. PubMed ID: 29556414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Individualized treadmill and strength training for chronic stroke rehabilitation: effects of imbalance.
    Al-Jarrah M; Shaheen S; Harries N; Kissani N; Molteni F; Bar Haim S;
    Top Stroke Rehabil; 2014; 21 Suppl 1():S25-32. PubMed ID: 24722041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robotic rehabilitation therapy using Hybrid Assistive Limb (HAL) for patients with spinal cord lesions: a narrative review.
    Koda M; Kubota S; Kadone H; Miura K; Funayama T; Takahashi H; Yamazaki M
    N Am Spine Soc J; 2023 Jun; 14():100209. PubMed ID: 37113251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke.
    Manji A; Amimoto K; Matsuda T; Wada Y; Inaba A; Ko S
    Neurosci Lett; 2018 Jan; 662():302-305. PubMed ID: 29107706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Body Weight-supported Walking on Exercise Capacity and Walking Speed in Patients with Knee Osteoarthritis: A Randomized Controlled Trial.
    Watanabe S; Someya F
    J Jpn Phys Ther Assoc; 2013; 16(1):28-35. PubMed ID: 25792901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.