BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 30984019)

  • 1. Revisiting the Role of Exercise Countermeasure on the Regulation of Energy Balance During Space Flight.
    Laurens C; Simon C; Vernikos J; Gauquelin-Koch G; Blanc S; Bergouignan A
    Front Physiol; 2019; 10():321. PubMed ID: 30984019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.
    Petersen N; Jaekel P; Rosenberger A; Weber T; Scott J; Castrucci F; Lambrecht G; Ploutz-Snyder L; Damann V; Kozlovskaya I; Mester J
    Extrem Physiol Med; 2016; 5():9. PubMed ID: 27489615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musculoskeletal adaptation to mechanical forces on Earth and in space.
    Whalen R
    Physiologist; 1993; 36(1 Suppl):S127-30. PubMed ID: 11537418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Astronaut-Athlete: Optimizing Human Performance in Space.
    Hackney KJ; Scott JM; Hanson AM; English KL; Downs ME; Ploutz-Snyder LL
    J Strength Cond Res; 2015 Dec; 29(12):3531-45. PubMed ID: 26595138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction to the Frontiers Research Topic: Optimization of Exercise Countermeasures for Human Space Flight - Lessons From Terrestrial Physiology and Operational Considerations.
    Scott JPR; Weber T; Green DA
    Front Physiol; 2019; 10():173. PubMed ID: 30899226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Space exercise and Earth benefits.
    Macias BR; Groppo ER; Eastlack RK; Watenpaugh DE; Lee SM; Schneider SM; Boda WL; Smith SM; Cutuk A; Pedowitz RA; Meyer RS; Hargens AR
    Curr Pharm Biotechnol; 2005 Aug; 6(4):305-17. PubMed ID: 16101469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The exercise and environmental physiology of extravehicular activity.
    Cowell SA; Stocks JM; Evans DG; Simonson SR; Greenleaf JE
    Aviat Space Environ Med; 2002 Jan; 73(1):54-67. PubMed ID: 11817621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights.
    Kozlovskaya IB; Grigoriev AI; Stepantzov VI
    Acta Astronaut; 1995; 36(8-12):661-8. PubMed ID: 11541002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of exercising in space.
    Hawkey A
    Interdiscip Sci Rev; 2003 Jun; 28(2):130-8. PubMed ID: 16025596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The problem of creation of artificial gravity with the use of a short-radius centrifuge for medical support of interplanetary piloted missions].
    Kotovskaia AR; Vil'-Vil'iams IF; Luk'ianuk VIu
    Aviakosm Ekolog Med; 2003; 37(5):36-40. PubMed ID: 14730731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA).
    Hedge ET; Patterson CA; Mastrandrea CJ; Sonjak V; Hajj-Boutros G; Faust A; Morais JA; Hughson RL
    Front Physiol; 2022; 13():928313. PubMed ID: 36017336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WISE 2005: Aerobic and resistive countermeasures prevent paraspinal muscle deconditioning during 60-day bed rest in women.
    Holt JA; Macias BR; Schneider SM; Watenpaugh DE; Lee SM; Chang DG; Hargens AR
    J Appl Physiol (1985); 2016 May; 120(10):1215-22. PubMed ID: 26893030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spacelab Life Sciences flight experiments: an integrated approach to the study of cardiovascular deconditioning and orthostatic hypotension.
    Gaffney FA
    Acta Astronaut; 1987; 15(5):291-4. PubMed ID: 11538833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts.
    Lane HW; Gretebeck RJ; Schoeller DA; Davis-Street J; Socki RA; Gibson EK
    Am J Clin Nutr; 1997 Jan; 65(1):4-12. PubMed ID: 8988906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space Flight Diet-Induced Deficiency and Response to Gravity-Free Resistive Exercise.
    Baba S; Smith T; Hellmann J; Bhatnagar A; Carter K; Vanhoover A; Caruso J
    Nutrients; 2020 Aug; 12(8):. PubMed ID: 32796546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anorexia in space and possible etiologies: an overview.
    Da Silva MS; Zimmerman PM; Meguid MM; Nandi J; Ohinata K; Xu Y; Chen C; Tada T; Inui A
    Nutrition; 2002 Oct; 18(10):805-13. PubMed ID: 12361771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of body size and countermeasure exercise on estimates of life support resources during all-female crewed exploration missions.
    Scott JPR; Green DA; Weerts G; Cheuvront SN
    Sci Rep; 2023 Apr; 13(1):5950. PubMed ID: 37045858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physical price of a ticket into space.
    Hawkey A
    J Br Interplanet Soc; 2003; 56(5-6):152-9. PubMed ID: 14552355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise-training protocols for astronauts in microgravity.
    Greenleaf JE; Bulbulian R; Bernauer EM; Haskell WL; Moore T
    J Appl Physiol (1985); 1989 Dec; 67(6):2191-204. PubMed ID: 2691487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight.
    Macaulay TR; Peters BT; Wood SJ; Clément GR; Oddsson L; Bloomberg JJ
    Front Syst Neurosci; 2021; 15():658985. PubMed ID: 33986648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.