BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30984238)

  • 1. Simultaneous Interrogation of Cancer Omics to Identify Subtypes With Significant Clinical Differences.
    Xu A; Chen J; Peng H; Han G; Cai H
    Front Genet; 2019; 10():236. PubMed ID: 30984238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration.
    Chen F; Peng W; Dai W; Wei S; Fu X; Liu L; Liu L
    Health Inf Sci Syst; 2024 Dec; 12(1):12. PubMed ID: 38404715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data.
    Wu Y; Wang H; Li Z; Cheng J; Fang R; Cao H; Cui Y
    Comput Struct Biotechnol J; 2021; 19():1567-1578. PubMed ID: 33868594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes.
    Guo Y; Zheng J; Shang X; Li Z
    Genes (Basel); 2018 Jun; 9(7):. PubMed ID: 29933539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Translational Pipeline for Overall Survival Prediction of Breast Cancer Patients by Decision-Level Integration of Multi-Omics Data.
    Mitchel J; Chatlin K; Tong L; Wang MD
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2019 Nov; 2019():1573-1580. PubMed ID: 32601549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pan-Cancer DNA Methylation Analysis and Tumor Origin Identification of Carcinoma of Unknown Primary Site Based on Multi-Omics.
    Liu P
    Front Genet; 2021; 12():798748. PubMed ID: 35069697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient subgrouping with distinct survival rates via integration of multiomics data on a Grassmann manifold.
    Alfatemi A; Peng H; Rong W; Zhang B; Cai H
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):190. PubMed ID: 35870923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data.
    Tong D; Tian Y; Zhou T; Ye Q; Li J; Ding K; Li J
    BMC Med Inform Decis Mak; 2020 Feb; 20(1):22. PubMed ID: 32033604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Pan-Cancer Prognostic Biomarkers Through Integration of Multi-Omics Data.
    Zhao N; Guo M; Wang K; Zhang C; Liu X
    Front Bioeng Biotechnol; 2020; 8():268. PubMed ID: 32300588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using association signal annotations to boost similarity network fusion.
    Ruan P; Wang Y; Shen R; Wang S
    Bioinformatics; 2019 Oct; 35(19):3718-3726. PubMed ID: 30863842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-dimensional data integration algorithm based on random walk with restart.
    Wen Y; Song X; Yan B; Yang X; Wu L; Leng D; He S; Bo X
    BMC Bioinformatics; 2021 Feb; 22(1):97. PubMed ID: 33639858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis.
    Qi L; Wang W; Wu T; Zhu L; He L; Wang X
    Front Genet; 2021; 12():607817. PubMed ID: 34367231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. i-Modern: Integrated multi-omics network model identifies potential therapeutic targets in glioma by deep learning with interpretability.
    Pan X; Burgman B; Wu E; Huang JH; Sahni N; Stephen Yi S
    Comput Struct Biotechnol J; 2022; 20():3511-3521. PubMed ID: 35860408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of pan-cancer multi-omics data for novel mixed subgroup identification using machine learning methods.
    Khadirnaikar S; Shukla S; Prasanna SRM
    PLoS One; 2023; 18(10):e0287176. PubMed ID: 37856446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.