BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30984238)

  • 21. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference.
    Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction.
    Tan K; Huang W; Hu J; Dong S
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):129. PubMed ID: 32646413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of functional gene modules by integrating multi-omics data and known molecular interactions.
    Chen X; Han M; Li Y; Li X; Zhang J; Zhu Y
    Front Genet; 2023; 14():1082032. PubMed ID: 36760999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data.
    Tao M; Song T; Du W; Han S; Zuo C; Li Y; Wang Y; Yang Z
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30866472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative, multi-omics, analysis of blood samples improves model predictions: applications to cancer.
    Ponzi E; Thoresen M; Haugdahl Nøst T; Møllersen K
    BMC Bioinformatics; 2021 Aug; 22(1):395. PubMed ID: 34353282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A network embedding based method for partial multi-omics integration in cancer subtyping.
    Xu H; Gao L; Huang M; Duan R
    Methods; 2021 Aug; 192():67-76. PubMed ID: 32805397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data.
    Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Massive integrative gene set analysis enables functional characterization of breast cancer subtypes.
    Rodriguez JC; Merino GA; Llera AS; Fernández EA
    J Biomed Inform; 2019 May; 93():103157. PubMed ID: 30928514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.
    Moon M; Nakai K
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850006. PubMed ID: 29566639
    [TBL] [Abstract][Full Text] [Related]  

  • 32. WMLRR: A Weighted Multi-View Low Rank Representation to Identify Cancer Subtypes From Multiple Types of Omics Data.
    Sun Y; Ou-Yang L; Dai DQ
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2891-2897. PubMed ID: 33656995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cancer Subtype Discovery Based on Integrative Model of Multigenomic Data.
    Ge SG; Xia J; Sha W; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1115-1121. PubMed ID: 28113782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data.
    Salimy S; Lanjanian H; Abbasi K; Salimi M; Najafi A; Tapak L; Masoudi-Nejad A
    Heliyon; 2023 Jul; 9(7):e17653. PubMed ID: 37455955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data.
    Hao Y; Li D; Xu Y; Ouyang J; Wang Y; Zhang Y; Li B; Xie L; Qin G
    BMC Bioinformatics; 2019 May; 20(Suppl 7):195. PubMed ID: 31074374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools.
    Nicora G; Vitali F; Dagliati A; Geifman N; Bellazzi R
    Front Oncol; 2020; 10():1030. PubMed ID: 32695678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms.
    Kusch N; Schuppert A
    PLoS One; 2020; 15(11):e0238961. PubMed ID: 33226984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning-based ovarian cancer subtypes identification using multi-omics data.
    Guo LY; Wu AH; Wang YX; Zhang LP; Chai H; Liang XF
    BioData Min; 2020; 13():10. PubMed ID: 32863885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating multidimensional data for clustering analysis with applications to cancer patient data.
    Park S; Xu H; Zhao H
    J Am Stat Assoc; 2021; 116(533):14-26. PubMed ID: 36339813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.