These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30984401)

  • 1. SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias.
    Quaglietta L; Porto M
    Mov Ecol; 2019; 7():11. PubMed ID: 30984401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating abiotic controls on animal movements in metacommunities.
    McLeod AM; Leroux SJ
    Ecology; 2021 Jul; 102(7):e03365. PubMed ID: 33871056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation and application of river network analogues for use in ecology and evolution.
    Carraro L; Bertuzzo E; Fronhofer EA; Furrer R; Gounand I; Rinaldo A; Altermatt F
    Ecol Evol; 2020 Jul; 10(14):7537-7550. PubMed ID: 32760547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dual role of rivers in facilitating or hindering movements of the false heath fritillary butterfly.
    Fabritius H; Rönkä K; Ovaskainen O
    Mov Ecol; 2015; 3():4. PubMed ID: 27408723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What's your move? Movement as a link between personality and spatial dynamics in animal populations.
    Spiegel O; Leu ST; Bull CM; Sih A
    Ecol Lett; 2017 Jan; 20(1):3-18. PubMed ID: 28000433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multistate Langevin diffusion for inferring behavior-specific habitat selection and utilization distributions.
    McClintock BT; Lander ME
    Ecology; 2024 Jan; 105(1):e4186. PubMed ID: 37794831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining detection heterogeneity with finite mixture and non-Euclidean movement in spatially explicit capture-recapture models.
    Marrotte RR; Howe EJ; Beauclerc KB; Potter D; Northrup JM
    PeerJ; 2022; 10():e13490. PubMed ID: 35694380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape as a model: the importance of geometry.
    Holland EP; Aegerter JN; Dytham C; Smith GC
    PLoS Comput Biol; 2007 Oct; 3(10):1979-92. PubMed ID: 17967050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.
    Panzacchi M; Van Moorter B; Strand O; Saerens M; Kivimäki I; St Clair CC; Herfindal I; Boitani L
    J Anim Ecol; 2016 Jan; 85(1):32-42. PubMed ID: 25950737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory-based energy landscapes of gene regulatory networks.
    Venkatachalapathy H; Azarin SM; Sarkar CA
    Biophys J; 2021 Feb; 120(4):687-698. PubMed ID: 33453275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating natural selection in landscape genetics.
    Landguth EL; Cushman SA; Johnson NA
    Mol Ecol Resour; 2012 Mar; 12(2):363-8. PubMed ID: 21951716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying network theory to animal movements to identify properties of landscape space use.
    Bastille-Rousseau G; Douglas-Hamilton I; Blake S; Northrup JM; Wittemyer G
    Ecol Appl; 2018 Apr; 28(3):854-864. PubMed ID: 29420867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking movement behaviour, dispersal and population processes: is individual variation a key?
    Hawkes C
    J Anim Ecol; 2009 Sep; 78(5):894-906. PubMed ID: 19302396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops.
    Colbach N
    Environ Sci Pollut Res Int; 2009 May; 16(3):348-60. PubMed ID: 19067013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional model of terrain-induced updrafts for movement ecology studies.
    Thedin R; Brandes D; Quon E; Sandhu R; Tripp C
    Mov Ecol; 2024 Mar; 12(1):25. PubMed ID: 38549152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging the gap between movement data and connectivity analysis using the Time-Explicit Habitat Selection (TEHS) model.
    Valle D; Attias N; Cullen JA; Hooten MB; Giroux A; Oliveira-Santos LGR; Desbiez ALJ; Fletcher RJ
    Mov Ecol; 2024 Mar; 12(1):19. PubMed ID: 38429836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating population genetics of pathogen vectors in changing landscapes: guidelines and application with Triatoma brasiliensis.
    Rebaudo F; Costa J; Almeida CE; Silvain JF; Harry M; Dangles O
    PLoS Negl Trop Dis; 2014 Aug; 8(8):e3068. PubMed ID: 25102068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel step selection analyses on energy landscapes reveal how linear features alter migrations of soaring birds.
    Eisaguirre JM; Booms TL; Barger CP; Lewis SB; Breed GA
    J Anim Ecol; 2020 Nov; 89(11):2567-2583. PubMed ID: 32926415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atlasing of Assembly Landscapes using Distance Geometry and Graph Rigidity.
    Prabhu R; Sitharam M; Ozkan A; Wu R
    J Chem Inf Model; 2020 Oct; 60(10):4924-4957. PubMed ID: 32786706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.