These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 30984625)
1. A Two-Way Proteome Microarray Strategy to Identify Novel Cao T; Lyu L; Jia H; Wang J; Du F; Pan L; Li Z; Xing A; Xiao J; Ma Y; Zhang Z Front Cell Infect Microbiol; 2019; 9():65. PubMed ID: 30984625 [TBL] [Abstract][Full Text] [Related]
2. Global discovery the PstP interactions using Mtb proteome microarray and revealing novel connections with EthR. Li KK; Qu DH; Zhang HN; Chen FY; Xu L; Wang MY; Su HY; Tao SC; Wu FL J Proteomics; 2020 Mar; 215():103650. PubMed ID: 31958639 [TBL] [Abstract][Full Text] [Related]
3. Systematic Identification of He X; Jiang HW; Chen H; Zhang HN; Liu Y; Xu ZW; Wu FL; Guo SJ; Hou JL; Yang MK; Yan W; Deng JY; Bi LJ; Zhang XE; Tao SC Mol Cell Proteomics; 2017 Dec; 16(12):2243-2253. PubMed ID: 29018126 [No Abstract] [Full Text] [Related]
4. Genetic-and-Epigenetic Interspecies Networks for Cross-Talk Mechanisms in Human Macrophages and Dendritic Cells during MTB Infection. Li CW; Lee YL; Chen BS Front Cell Infect Microbiol; 2016; 6():124. PubMed ID: 27803888 [TBL] [Abstract][Full Text] [Related]
5. Integrating Multifaceted Information to Predict Mycobacterium tuberculosis-Human Protein-Protein Interactions. Sun J; Yang LL; Chen X; Kong DX; Liu R J Proteome Res; 2018 Nov; 17(11):3810-3823. PubMed ID: 30269499 [TBL] [Abstract][Full Text] [Related]
6. Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Deng J; Bi L; Zhou L; Guo SJ; Fleming J; Jiang HW; Zhou Y; Gu J; Zhong Q; Wang ZX; Liu Z; Deng RP; Gao J; Chen T; Li W; Wang JF; Wang X; Li H; Ge F; Zhu G; Zhang HN; Gu J; Wu FL; Zhang Z; Wang D; Hang H; Li Y; Cheng L; He X; Tao SC; Zhang XE Cell Rep; 2014 Dec; 9(6):2317-29. PubMed ID: 25497094 [TBL] [Abstract][Full Text] [Related]
7. Changes in the Membrane-Associated Proteins of Exosomes Released from Human Macrophages after Mycobacterium tuberculosis Infection. Diaz G; Wolfe LM; Kruh-Garcia NA; Dobos KM Sci Rep; 2016 Nov; 6():37975. PubMed ID: 27897233 [TBL] [Abstract][Full Text] [Related]
8. Global Profiling of PknG Interactions Using a Human Proteome Microarray Reveals Novel Connections with CypA. Wu FL; Liu Y; Zhang HN; Jiang HW; Cheng L; Guo SJ; Deng JY; Bi LJ; Zhang XE; Gao HF; Tao SC Proteomics; 2018 Dec; 18(23):e1800265. PubMed ID: 30281201 [TBL] [Abstract][Full Text] [Related]
9. Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin. Yuan P; He L; Chen D; Sun Y; Ge Z; Shen D; Lu Y J Proteomics; 2020 Feb; 212():103576. PubMed ID: 31706025 [TBL] [Abstract][Full Text] [Related]
10. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Coppola M; Ottenhoff TH Semin Immunol; 2018 Oct; 39():88-101. PubMed ID: 30327124 [TBL] [Abstract][Full Text] [Related]
11. Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice. McMurry JA; Kimball S; Lee JH; Rivera D; Martin W; Weiner DB; Kutzler M; Sherman DR; Kornfeld H; De Groot AS Curr Mol Med; 2007 Jun; 7(4):351-68. PubMed ID: 17584075 [TBL] [Abstract][Full Text] [Related]
12. Differences in IgG responses against infection phase related Mycobacterium tuberculosis (Mtb) specific antigens in individuals exposed or not to Mtb correlate with control of TB infection and progression. Coppola M; Arroyo L; van Meijgaarden KE; Franken KL; Geluk A; Barrera LF; Ottenhoff THM Tuberculosis (Edinb); 2017 Sep; 106():25-32. PubMed ID: 28802401 [TBL] [Abstract][Full Text] [Related]
13. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. Sia JK; Georgieva M; Rengarajan J J Immunol Res; 2015; 2015():747543. PubMed ID: 26258152 [TBL] [Abstract][Full Text] [Related]
14. Evidence for Highly Variable, Region-Specific Patterns of T-Cell Epitope Mutations Accumulating in Ramaiah A; Nayak S; Rakshit S; Manson AL; Abeel T; Shanmugam S; Sahoo PN; John AJUK; Sundaramurthi JC; Narayanan S; D'Souza G; von Hoegen P; Ottenhoff THM; Swaminathan S; Earl AM; Vyakarnam A Front Immunol; 2019; 10():195. PubMed ID: 30814998 [TBL] [Abstract][Full Text] [Related]
15. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Marimani M; Ahmad A; Duse A Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504 [TBL] [Abstract][Full Text] [Related]
16. Inflammasome Activation and Function During Infection with Mycobacterium Tuberculosis. Ablasser A; Dorhoi A Curr Top Microbiol Immunol; 2016; 397():183-97. PubMed ID: 27460810 [TBL] [Abstract][Full Text] [Related]
17. System-wide coordinates of higher order functions in host-pathogen environment upon Mycobacterium tuberculosis infection. Parvati Sai Arun PV; Miryala SK; Rana A; Kurukuti S; Akhter Y; Yellaboina S Sci Rep; 2018 Mar; 8(1):5079. PubMed ID: 29567998 [TBL] [Abstract][Full Text] [Related]
18. Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Borkute RR; Woelke S; Pei G; Dorhoi A Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946542 [TBL] [Abstract][Full Text] [Related]