These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 30984800)
1. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication. Liu J; Konthasinghe K; Davanco M; Lawall J; Anant V; Verma V; Mirin R; Woo Nam S; Dong Song J; Ma B; Sheng Chen Z; Qiao Ni H; Chuan Niu Z; Srinivasan K Phys Rev Appl; 2018; 9():. PubMed ID: 30984800 [TBL] [Abstract][Full Text] [Related]
2. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Sapienza L; Davanço M; Badolato A; Srinivasan K Nat Commun; 2015 Jul; 6():7833. PubMed ID: 26211442 [TBL] [Abstract][Full Text] [Related]
3. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices. Sapienza L; Liu J; Song JD; Fält S; Wegscheider W; Badolato A; Srinivasan K Sci Rep; 2017 Jul; 7(1):6205. PubMed ID: 28740160 [TBL] [Abstract][Full Text] [Related]
4. The influence of temperature on the photoluminescence properties of single InAs quantum dots grown on patterned GaAs. Tommila J; Strelow C; Schramm A; Hakkarainen TV; Dumitrescu M; Kipp T; Guina M Nanoscale Res Lett; 2012 Jun; 7(1):313. PubMed ID: 22713215 [TBL] [Abstract][Full Text] [Related]
5. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. Zieliński M J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261 [TBL] [Abstract][Full Text] [Related]
6. Photoluminescence of InAs/GaAs quantum dots under direct two-photon excitation. Hu X; Zhang Y; Guzun D; Ware ME; Mazur YI; Lienau C; Salamo GJ Sci Rep; 2020 Jul; 10(1):10930. PubMed ID: 32616829 [TBL] [Abstract][Full Text] [Related]
7. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity. Vora PM; Bracker AS; Carter SG; Sweeney TM; Kim M; Kim CS; Yang L; Brereton PG; Economou SE; Gammon D Nat Commun; 2015 Jul; 6():7665. PubMed ID: 26184654 [TBL] [Abstract][Full Text] [Related]
8. Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition. Pashchenko AS; Lunin LS; Danilina EM; Chebotarev SN Beilstein J Nanotechnol; 2018; 9():2794-2801. PubMed ID: 30498652 [TBL] [Abstract][Full Text] [Related]
9. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition. Guimard D; Ishida M; Bordel D; Li L; Nishioka M; Tanaka Y; Ekawa M; Sudo H; Yamamoto T; Kondo H; Sugawara M; Arakawa Y Nanotechnology; 2010 Mar; 21(10):105604. PubMed ID: 20160334 [TBL] [Abstract][Full Text] [Related]
10. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Chen ZS; Ma B; Shang XJ; He Y; Zhang LC; Ni HQ; Wang JL; Niu ZC Nanoscale Res Lett; 2016 Dec; 11(1):382. PubMed ID: 27576522 [TBL] [Abstract][Full Text] [Related]
11. Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip. Singh A; Li Q; Liu S; Yu Y; Lu X; Schneider C; Höfling S; Lawall J; Verma V; Mirin R; Nam SW; Liu J; Srinivasan K Optica; 2019; 6(5):. PubMed ID: 38496234 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Davanco M; Liu J; Sapienza L; Zhang CZ; De Miranda Cardoso JV; Verma V; Mirin R; Nam SW; Liu L; Srinivasan K Nat Commun; 2017 Oct; 8(1):889. PubMed ID: 29026109 [TBL] [Abstract][Full Text] [Related]
15. The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures. Seravalli L; Trevisi G; Frigeri P; Franchi S; Geddo M; Guizzetti G Nanotechnology; 2009 Jul; 20(27):275703. PubMed ID: 19531853 [TBL] [Abstract][Full Text] [Related]
16. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna. Rakhlin M; Klimko G; Sorokin S; Kulagina M; Zadiranov Y; Kazanov D; Shubina T; Ivanov S; Toropov A Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564271 [TBL] [Abstract][Full Text] [Related]
18. Machine learning enhanced evaluation of semiconductor quantum dots. Corcione E; Jakob F; Wagner L; Joos R; Bisquerra A; Schmidt M; Wieck AD; Ludwig A; Jetter M; Portalupi SL; Michler P; Tarín C Sci Rep; 2024 Feb; 14(1):4154. PubMed ID: 38378845 [TBL] [Abstract][Full Text] [Related]
19. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers. Su XB; Ding Y; Ma B; Zhang KL; Chen ZS; Li JL; Cui XR; Xu YQ; Ni HQ; Niu ZC Nanoscale Res Lett; 2018 Feb; 13(1):59. PubMed ID: 29468483 [TBL] [Abstract][Full Text] [Related]
20. Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm. Liu WS; Tseng HL; Kuo PC Opt Express; 2014 Aug; 22(16):18860-9. PubMed ID: 25320972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]