BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30985083)

  • 41. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality.
    Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O
    Biotechnol Prog; 2018 Mar; 34(2):494-504. PubMed ID: 29314777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Approaches to optimizing animal cell culture process: substrate metabolism regulation and protein expression improvement.
    Zhang Y
    Adv Biochem Eng Biotechnol; 2009; 113():177-215. PubMed ID: 19373452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perfusion CHO cell culture applied to lower aggregation and increase volumetric productivity for a bispecific recombinant protein.
    Gomez N; Barkhordarian H; Lull J; Huh J; GhattyVenkataKrishna P; Zhang X
    J Biotechnol; 2019 Oct; 304():70-77. PubMed ID: 31381940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors.
    Pohlscheidt M; Jacobs M; Wolf S; Thiele J; Jockwer A; Gabelsberger J; Jenzsch M; Tebbe H; Burg J
    Biotechnol Prog; 2013; 29(1):222-9. PubMed ID: 23225663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures.
    Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM
    Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential gene expression of a feed-spiked super-producing CHO cell line.
    Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R
    J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feed optimization in fed-batch culture.
    Costa AR; Rodrigues ME; Henriques M; Oliveira R; Azeredo J
    Methods Mol Biol; 2014; 1104():105-16. PubMed ID: 24297412
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and application of a high-throughput platform for perfusion-based cell culture processes.
    Villiger-Oberbek A; Yang Y; Zhou W; Yang J
    J Biotechnol; 2015 Oct; 212():21-9. PubMed ID: 26197419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of Tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture.
    Gomez N; Ambhaikar M; Zhang L; Huang CJ; Barkhordarian H; Lull J; Gutierrez C
    Biotechnol Prog; 2017 Mar; 33(2):490-499. PubMed ID: 27977914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.
    Zhang Y; Stobbe P; Silvander CO; Chotteau V
    J Biotechnol; 2015 Nov; 213():28-41. PubMed ID: 26211737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors.
    Bielser JM; Domaradzki J; Souquet J; Broly H; Morbidelli M
    Biotechnol Prog; 2019 May; 35(3):e2790. PubMed ID: 30773840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.
    Xu S; Chen H
    J Biotechnol; 2016 Aug; 231():149-159. PubMed ID: 27320019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Benchmarking of commercially available CHO cell culture media for antibody production.
    Reinhart D; Damjanovic L; Kaisermayer C; Kunert R
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of a scale-up strategy for Chinese hamster ovary cell culture processes using the k
    Doi T; Kajihara H; Chuman Y; Kuwae S; Kaminagayoshi T; Omasa T
    Biotechnol Prog; 2020 Sep; 36(5):e3000. PubMed ID: 32298540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid intensification of an established CHO cell fed-batch process.
    Schulze M; Niemann J; Wijffels RH; Matuszczyk J; Martens DE
    Biotechnol Prog; 2022 Jan; 38(1):e3213. PubMed ID: 34542245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a shake tube-based scale-down model for perfusion cultures.
    Wolf MKF; Lorenz V; Karst DJ; Souquet J; Broly H; Morbidelli M
    Biotechnol Bioeng; 2018 Nov; 115(11):2703-2713. PubMed ID: 30039852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving product quality and productivity of bispecific molecules through the application of continuous perfusion principles.
    Gomez N; Lull J; Yang X; Wang Y; Zhang X; Wieczorek A; Harrahy J; Pritchard M; Cano DM; Shearer M; Goudar C
    Biotechnol Prog; 2020 Jul; 36(4):e2973. PubMed ID: 31991523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Small-scale bioreactor supports high density HEK293 cell perfusion culture for the production of recombinant Erythropoietin.
    Schwarz H; Zhang Y; Zhan C; Malm M; Field R; Turner R; Sellick C; Varley P; Rockberg J; Chotteau V
    J Biotechnol; 2020 Feb; 309():44-52. PubMed ID: 31891733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "Organized stress" for robust scale-up of intensified production process with fed-batch seed bioreactor.
    Ben Yahia B; Piednoir A; Dahomais T; Eggermont S; Paul W
    Biotechnol Bioeng; 2023 Sep; 120(9):2509-2522. PubMed ID: 37027375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Feed development for fed-batch CHO production process by semisteady state analysis.
    Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ
    Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.