BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30985083)

  • 61. "Organized stress" for robust scale-up of intensified production process with fed-batch seed bioreactor.
    Ben Yahia B; Piednoir A; Dahomais T; Eggermont S; Paul W
    Biotechnol Bioeng; 2023 Sep; 120(9):2509-2522. PubMed ID: 37027375
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Feed development for fed-batch CHO production process by semisteady state analysis.
    Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ
    Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hydrocyclones as cell retention devices for an N-1 perfusion bioreactor linked to a continuous-flow stirred tank production bioreactor.
    Kundu AM; Hiller GW
    Biotechnol Bioeng; 2021 May; 118(5):1973-1986. PubMed ID: 33559888
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Feedback control of two supplemental feeds during fed-batch culture on a platform process using inline Raman models for glucose and phenylalanine concentration.
    Webster TA; Hadley BC; Dickson M; Busa JK; Jaques C; Mason C
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):127-140. PubMed ID: 32816075
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Perfusion reduces bispecific antibody aggregation via mitigating mitochondrial dysfunction-induced glutathione oxidation and ER stress in CHO cells.
    Sinharoy P; Aziz AH; Majewska NI; Ahuja S; Handlogten MW
    Sci Rep; 2020 Oct; 10(1):16620. PubMed ID: 33024175
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel, linked bioreactor system for continuous production of biologics.
    Gagnon M; Nagre S; Wang W; Coffman J; Hiller GW
    Biotechnol Bioeng; 2019 Aug; 116(8):1946-1958. PubMed ID: 30950040
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.
    Wolf MKF; Closet A; Bzowska M; Bielser JM; Souquet J; Broly H; Morbidelli M
    Biotechnol J; 2019 Feb; 14(2):e1700722. PubMed ID: 29781256
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.
    Yang WC; Minkler DF; Kshirsagar R; Ryll T; Huang YM
    J Biotechnol; 2016 Jan; 217():1-11. PubMed ID: 26521697
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Modulation of mAb quality attributes using microliter scale fed-batch cultures.
    Rouiller Y; PĂ©rilleux A; Vesin MN; Stettler M; Jordan M; Broly H
    Biotechnol Prog; 2014; 30(3):571-83. PubMed ID: 24777991
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures.
    Toussaint C; Henry O; Durocher Y
    J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Integrated continuous production of recombinant therapeutic proteins.
    Warikoo V; Godawat R; Brower K; Jain S; Cummings D; Simons E; Johnson T; Walther J; Yu M; Wright B; McLarty J; Karey KP; Hwang C; Zhou W; Riske F; Konstantinov K
    Biotechnol Bioeng; 2012 Dec; 109(12):3018-29. PubMed ID: 22729761
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Compact Cell Settlers for Perfusion Cultures of Microbial (and Mammalian) Cells.
    Freeman CA; Samuel PSD; Kompala DS
    Biotechnol Prog; 2017 Jul; 33(4):913-922. PubMed ID: 28748636
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Keto leucine and keto isoleucine are bioavailable precursors of their respective amino acids in cell culture media.
    Schmidt C; Seibel R; Wehsling M; Le Mignon M; Wille G; Fischer M; Zimmer A
    J Biotechnol; 2020 Sep; 321():1-12. PubMed ID: 32580011
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Towards the development of automated fed-batch cell culture processes at microscale.
    Wiegmann V; Giaka M; Martinez CB; Baganz F
    Biotechniques; 2019 Nov; 67(5):238-241. PubMed ID: 31529987
    [No Abstract]   [Full Text] [Related]  

  • 76. Development of Mammalian Cell Perfusion Cultures at Lab Scale: From Orbitally Shaken Tubes to Benchtop Bioreactors.
    Wolf M; Morbidelli M
    Methods Mol Biol; 2020; 2095():125-140. PubMed ID: 31858466
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development.
    Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J
    Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures.
    Zhang W; Liu X; Tang H; Zhang X; Zhou Y; Fan L; Wang H; Tan WS; Zhao L
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6953-6966. PubMed ID: 32577803
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures.
    Chitwood DG; Wang Q; Elliott K; Bullock A; Jordana D; Li Z; Wu C; Harcum SW; Saski CA
    BMC Biotechnol; 2021 Jan; 21(1):4. PubMed ID: 33419422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.