These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30985267)

  • 1. Swimming Performance of a Tensegrity Robotic Fish.
    Chen B; Jiang H
    Soft Robot; 2019 Aug; 6(4):520-531. PubMed ID: 30985267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible tensegrity wing design and insights in principles of swimming kinematics of batoid rays.
    Chen J
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34186517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tail-stiffness optimization for a flexible robotic fish.
    Zou Q; Zhou C; Lu B; Liao X; Zhang Z
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35896103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
    White CH; Lauder GV; Bart-Smith H
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 32927442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of swimming performance for a biomimetic multi-joint robotic fish with a compliant passive joint.
    Chen D; Wu Z; Dong H; Tan M; Yu J
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33105126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of fish midlines for optimizing robot design.
    Fetherstonhaugh SEAW; Shen Q; Akanyeti O
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33735844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Actuation and Sensing of a Tensegrity Structure Using Robotic Skins.
    Booth JW; Cyr-Choinière O; Case JC; Shah D; Yuen MC; Kramer-Bottiglio R
    Soft Robot; 2021 Oct; 8(5):531-541. PubMed ID: 32985940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of fish swimming with active muscles.
    Curatolo M; Teresi L
    J Theor Biol; 2016 Nov; 409():18-26. PubMed ID: 27552851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensegrity Robotics.
    Shah DS; Booth JW; Baines RL; Wang K; Vespignani M; Bekris K; Kramer-Bottiglio R
    Soft Robot; 2022 Aug; 9(4):639-656. PubMed ID: 34705572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wrist-inspired suspended tubercle-type tensegrity joint with variable stiffness capacity.
    Xie X; Xiong D; Wen JZ
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36351302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically Propelled Fish-Like Nanoswimmers.
    Li T; Li J; Zhang H; Chang X; Song W; Hu Y; Shao G; Sandraz E; Zhang G; Li L; Wang J
    Small; 2016 Nov; 12(44):6098-6105. PubMed ID: 27600373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2010 Jan; 213(1):89-107. PubMed ID: 20008366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling Locomotion of Cable-Driven Soft Spherical Tensegrity Robots.
    Kim K; Agogino AK; Agogino AM
    Soft Robot; 2020 Jun; 7(3):346-361. PubMed ID: 32031916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of caterpillar crawl using novel tensegrity structures.
    Orki O; Ayali A; Shai O; Ben-Hanan U
    Bioinspir Biomim; 2012 Dec; 7(4):046006. PubMed ID: 22872665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish.
    Li L; Ravi S; Xie G; Couzin ID
    Proc Math Phys Eng Sci; 2021 May; 477(2249):20200810. PubMed ID: 35153556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.