BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30985344)

  • 21. Efficacy of Electrical Pudendal Nerve Stimulation versus Transvaginal Electrical Stimulation in Treating Female Idiopathic Urgency Urinary Incontinence.
    Wang S; Lv J; Feng X; Lv T
    J Urol; 2017 Jun; 197(6):1496-1501. PubMed ID: 28153510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers.
    Gordon T
    Hand Clin; 2016 May; 32(2):103-17. PubMed ID: 27094884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in nerve repair.
    Khuong HT; Midha R
    Curr Neurol Neurosci Rep; 2013 Jan; 13(1):322. PubMed ID: 23250767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of combining electrical stimulation with BDNF gene transfer on the regeneration of crushed rat sciatic nerve.
    Alrashdan MS; Sung MA; Kwon YK; Chung HJ; Kim SJ; Lee JH
    Acta Neurochir (Wien); 2011 Oct; 153(10):2021-9. PubMed ID: 21656118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translational Approaches to Electrical Stimulation for Peripheral Nerve Regeneration.
    Ransom SC; Shahrestani S; Lien BV; Tafreshi AR; Brown NJ; Hanst B; Lehrich BM; Ransom RC; Sahyouni R
    Neurorehabil Neural Repair; 2020 Nov; 34(11):979-985. PubMed ID: 33043791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-term low-frequency electrical stimulation enhanced remyelination of injured peripheral nerves by inducing the promyelination effect of brain-derived neurotrophic factor on Schwann cell polarization.
    Wan L; Xia R; Ding W
    J Neurosci Res; 2010 Sep; 88(12):2578-87. PubMed ID: 20648648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair.
    Eberhardt KA; Irintchev A; Al-Majed AA; Simova O; Brushart TM; Gordon T; Schachner M
    Exp Neurol; 2006 Apr; 198(2):500-10. PubMed ID: 16460731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron.
    Brushart TM; Hoffman PN; Royall RM; Murinson BB; Witzel C; Gordon T
    J Neurosci; 2002 Aug; 22(15):6631-8. PubMed ID: 12151542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuroprotection trek--the next generation: neuromodulation II. Applications--epilepsy, nerve regeneration, neurotrophins.
    Andrews RJ
    Ann N Y Acad Sci; 2003 May; 993():14-24; discussion 48-53. PubMed ID: 12853291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual simulated childbirth injuries result in slowed recovery of pudendal nerve and urethral function.
    Jiang HH; Pan HQ; Gustilo-Ashby MA; Gill B; Glaab J; Zaszczurynski P; Damaser M
    Neurourol Urodyn; 2009; 28(3):229-35. PubMed ID: 18973146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Advances of functional electrical stimulation in treatment of peripheral nerve injuries].
    Lin S; Xu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):669-72. PubMed ID: 16130400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical neuromodulatory therapy in female voiding dysfunction.
    Bosch JL
    BJU Int; 2006 Sep; 98 Suppl 1():43-8; discussion 49. PubMed ID: 16911602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy.
    Koo J; MacEwan MR; Kang SK; Won SM; Stephen M; Gamble P; Xie Z; Yan Y; Chen YY; Shin J; Birenbaum N; Chung S; Kim SB; Khalifeh J; Harburg DV; Bean K; Paskett M; Kim J; Zohny ZS; Lee SM; Zhang R; Luo K; Ji B; Banks A; Lee HM; Huang Y; Ray WZ; Rogers JA
    Nat Med; 2018 Dec; 24(12):1830-1836. PubMed ID: 30297910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration.
    Senger JLB; Verge VMK; Macandili HSJ; Olson JL; Chan KM; Webber CA
    Exp Neurol; 2018 Apr; 302():75-84. PubMed ID: 29291403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise, neurotrophins, and axon regeneration in the PNS.
    English AW; Wilhelm JC; Ward PJ
    Physiology (Bethesda); 2014 Nov; 29(6):437-45. PubMed ID: 25362637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury.
    Gordon T; Chan KM; Sulaiman OA; Udina E; Amirjani N; Brushart TM
    Neurosurgery; 2009 Oct; 65(4 Suppl):A132-44. PubMed ID: 19927058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system.
    Gordon T; Udina E; Verge VM; de Chaves EI
    Motor Control; 2009 Oct; 13(4):412-41. PubMed ID: 20014648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The physiology of neural injury and regeneration: The role of neurotrophic factors.
    Gordon T
    J Commun Disord; 2010; 43(4):265-73. PubMed ID: 20451212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons.
    Al-Majed AA; Brushart TM; Gordon T
    Eur J Neurosci; 2000 Dec; 12(12):4381-90. PubMed ID: 11122348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury.
    Asensio-Pinilla E; Udina E; Jaramillo J; Navarro X
    Exp Neurol; 2009 Sep; 219(1):258-65. PubMed ID: 19500575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.