These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30985769)

  • 1. Deep-penetration fluorescence imaging through dense yeast cells suspensions using Airy beams.
    Nagar H; Roichman Y
    Opt Lett; 2019 Apr; 44(8):1896-1899. PubMed ID: 30985769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy.
    Purnapatra SB; Bera S; Mondal PP
    Sci Rep; 2012; 2():692. PubMed ID: 23012646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-diffracting beams for label-free imaging through turbid media.
    Nagar H; Dekel E; Kasimov D; Roichman Y
    Opt Lett; 2018 Jan; 43(2):190-193. PubMed ID: 29328235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue.
    Nylk J; McCluskey K; Aggarwal S; Tello JA; Dholakia K
    Biomed Opt Express; 2016 Oct; 7(10):4021-4033. PubMed ID: 27867712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Penetration Microscopic Imaging with Non-Diffracting Airy Beams.
    Guo Y; Huang Y; Li J; Wang L; Yang Z; Liu J; Peng X; Yan W; Qu J
    Membranes (Basel); 2021 May; 11(6):. PubMed ID: 34073286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryosectioning yeast communities for examining fluorescence patterns.
    Momeni B; Shou W
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23287845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light sheet fluorescence microscopy for neuroscience.
    Corsetti S; Gunn-Moore F; Dholakia K
    J Neurosci Methods; 2019 May; 319():16-27. PubMed ID: 30048674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of cortex organization and dynamics in microorganisms, using total internal reflection fluorescence microscopy.
    Spira F; Dominguez-Escobar J; Müller N; Wedlich-Söldner R
    J Vis Exp; 2012 May; (63):e3982. PubMed ID: 22588431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D Confocal Imaging of Yeast Organelles.
    Day KJ; Papanikou E; Glick BS
    Methods Mol Biol; 2016; 1496():1-11. PubMed ID: 27631997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional imaging in fluorescence by confocal scanning microscopy.
    Brakenhoff GJ; van der Voort HT; van Spronsen EA; Nanninga N
    J Microsc; 1989 Feb; 153(Pt 2):151-9. PubMed ID: 2651673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae growth media.
    Dymond JS
    Methods Enzymol; 2013; 533():191-204. PubMed ID: 24182924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumetric two-photon microscopy with a non-diffracting Airy beam.
    Tan XJ; Kong C; Ren YX; Lai CSW; Tsia KK; Wong KKY
    Opt Lett; 2019 Jan; 44(2):391-394. PubMed ID: 30644908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media.
    Wang L; Zhao X
    Appl Opt; 1997 Oct; 36(28):7277-82. PubMed ID: 18264237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical path clearing and enhanced transmission through colloidal suspensions.
    Baumgartl J; Cizmár T; Mazilu M; Chan VC; Carruthers AE; Capron BA; McNeely W; Wright EM; Dholakia K
    Opt Express; 2010 Aug; 18(16):17130-40. PubMed ID: 20721102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology.
    Suzuki G; Sawai H; Ohtani M; Nogami S; Sano-Kumagai F; Saka A; Yukawa M; Saito TL; Sese J; Hirata D; Morishita S; Ohya Y
    Curr Genet; 2006 Apr; 49(4):237-47. PubMed ID: 16397764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional confocal fluorescence microscopy.
    Brakenhoff GJ; van Spronsen EA; van der Voort HT; Nanninga N
    Methods Cell Biol; 1989; 30():379-98. PubMed ID: 2648116
    [No Abstract]   [Full Text] [Related]  

  • 18. Segmentation-free empirical beam hardening correction for CT.
    Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.
    Lam F; Cladière D; Guillaume C; Wassmann K; Bolte S
    Methods; 2017 Feb; 115():17-27. PubMed ID: 27826080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization.
    Hutcheson JA; Majid AA; Powless AJ; Muldoon TJ
    Rev Sci Instrum; 2015 Sep; 86(9):093709. PubMed ID: 26429450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.