These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30985782)

  • 21. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser.
    Zhou P; Chen H; Li N; Zhang R; Pan S
    Opt Lett; 2020 Mar; 45(6):1342-1345. PubMed ID: 32163961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. W-band simultaneous vector signal generation and radar detection based on photonic frequency quadrupling.
    Wang Y; Ding J; Wang M; Dong Z; Zhao F; Yu J
    Opt Lett; 2022 Feb; 47(3):537-540. PubMed ID: 35103675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint communication and radar sensing functions system based on photonics at the W-band.
    Wang Y; Liu J; Ding J; Wang M; Zhao F; Yu J
    Opt Express; 2022 Apr; 30(8):13404-13415. PubMed ID: 35472953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photonics-enabled wideband microwave burst detection.
    Li Y; Kuse N; Fermann M
    Opt Lett; 2018 Apr; 43(7):1491-1494. PubMed ID: 29601012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental generation of linearly chirped 350  GHz band pulses with a bandwidth beyond 60  GHz.
    Zhang H; Wang S; Jia S; Yu X; Jin X; Zheng S; Chi H; Zhang X
    Opt Lett; 2017 Dec; 42(24):5242-5245. PubMed ID: 29240183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microwave photonic de-chirp receiver for breaking the detection range swath limitation.
    Mo Z; Liu C; Yang J; Sun Y; Wang R; Dong J; Li W
    Opt Express; 2021 Mar; 29(7):11314-11327. PubMed ID: 33820246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photonics-aided integrated sensing and communications in mmW bands based on a DC-offset QPSK-encoded LFMCW.
    Lei M; Hua B; Cai Y; Zhang J; Zou Y; Tong W; Liu X; Fang M; Yu J; Zhu M
    Opt Express; 2022 Nov; 30(24):43088-43103. PubMed ID: 36523015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.
    González-Partida JT; Almorox-González P; Burgos-Garcia M; Dorta-Naranjo BP
    Sensors (Basel); 2008 May; 8(5):3384-3405. PubMed ID: 27879884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Research on Interferometric Inverse Synthetic Aperture Radar Imaging with Multi-Channel Terahertz Radar System.
    Zhang Y; Yang Q; Deng B; Qin Y; Wang H
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonics-based coherent wideband linear frequency modulation pulsed signal generation.
    Tong Y; Han D; Cheng R; Liu Z; Xie W; Qin J; Dong Y
    Opt Lett; 2018 Mar; 43(5):1023-1026. PubMed ID: 29489771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters.
    Ma Y; Liang D; Peng D; Zhang Z; Zhang Y; Zhang S; Liu Y
    Opt Express; 2017 Feb; 25(3):2355-2368. PubMed ID: 29519082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave photonic radar for distance and velocity measurement based on optical mixing and compressive sensing.
    Ding Y; Guo S; Zhou W; Dong W
    Appl Opt; 2021 Sep; 60(27):8534-8539. PubMed ID: 34612956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photonic generation of programmable coherent linear frequency modulated signal and its application in X-band radar system.
    Cheng R; Wei W; Xie W; Dong Y
    Opt Express; 2019 Dec; 27(26):37469-37480. PubMed ID: 31878526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wideband signal transceiver module with a Doppler shift function.
    Zeng H; Ye P; Guo L; Liao K
    Rev Sci Instrum; 2018 Dec; 89(12):125110. PubMed ID: 30599571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation.
    Qian N; Zou W; Zhang S; Chen J
    Opt Lett; 2018 Dec; 43(23):5869-5872. PubMed ID: 30499962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique.
    Nguyen TA; Chan EH; Minasian RA
    Opt Lett; 2014 Apr; 39(8):2419-22. PubMed ID: 24979008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution ISAR imaging based on photonic receiving for high-accuracy automatic target recognition.
    Deng A; Qian N; Hua S; Wan J; Lv Z; Zou W
    Opt Express; 2022 Jun; 30(12):20580-20588. PubMed ID: 36224799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures.
    Vercesi V; Onori D; Laghezza F; Scotti F; Bogoni A; Scaffardi M
    Opt Lett; 2015 Apr; 40(7):1358-61. PubMed ID: 25831332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distributed coherent microwave photonic radar with a high-precision fiber-optic time and frequency network.
    Wang H; Li S; Xue X; Xiao X; Zheng X
    Opt Express; 2020 Oct; 28(21):31241-31252. PubMed ID: 33115102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical design of an integrated imaging system of optical camera and synthetic aperture radar.
    Li R; Feng L; Xu K; Wang N; Fan X
    Opt Express; 2021 Oct; 29(22):36796-36812. PubMed ID: 34809082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.