These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30985797)

  • 21. All-optical characterization of the two-dimensional waveform and the Gouy phase of an infrared pulse based on plasma fluorescence of gas.
    Saito N; Ishii N; Kanai T; Itatani J
    Opt Express; 2018 Sep; 26(19):24591-24601. PubMed ID: 30469572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient radially polarized laser beam generation with a double interferometer.
    Tidwell SC; Kim GH; Kimura WD
    Appl Opt; 1993 Sep; 32(27):5222-9. PubMed ID: 20856329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degree of polarization of a tightly focused, partially coherent anomalous hollow beam.
    Liang C; Zhao C; Zhao C; Wang K; Cai Y
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2753-8. PubMed ID: 25606765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam.
    Kitamura K; Sakai K; Noda S
    Opt Express; 2010 Mar; 18(5):4518-25. PubMed ID: 20389464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tight focusing of a higher-order radially polarized beam transmitting through multi-zone binary phase pupil filters.
    Guo H; Weng X; Jiang M; Zhao Y; Sui G; Hu Q; Wang Y; Zhuang S
    Opt Express; 2013 Mar; 21(5):5363-72. PubMed ID: 23482107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orbit-induced localized spin angular momentum in the tight focusing of linearly polarized vortex beams.
    Yu P; Zhao Q; Hu X; Li Y; Gong L
    Opt Lett; 2018 Nov; 43(22):5677-5680. PubMed ID: 30439926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Optical properties of human normal bladder tissue at five different wavelengths of laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Sep; 24(9):1039-41. PubMed ID: 15762517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Annular (HSURIA) resonators: some experimental studies including polarization effects.
    Chodzko RA; Mason SB; Turner EB; Plummer WW
    Appl Opt; 1980 Mar; 19(5):778-89. PubMed ID: 20220932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of high-order harmonics with controllable elliptical polarization.
    Fleischer A; Sidorenko P; Cohen O
    Opt Lett; 2013 Jan; 38(2):223-5. PubMed ID: 23454969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of electric field and energy flux around the cracks on the surfaces of Nd-doped phosphate glasses.
    Zhang L; Huang L; Fan S; Bai G; Li K; Chen W; Hu L
    Appl Opt; 2010 Dec; 49(35):6668-74. PubMed ID: 21151222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area.
    Kotlyar VV; Stafeev SS; Kovalev AA
    Opt Express; 2019 Jun; 27(12):16689-16702. PubMed ID: 31252891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media.
    Gu B; Wen B; Rui G; Xue Y; Zhan Q; Cui Y
    Opt Lett; 2016 Apr; 41(7):1566-9. PubMed ID: 27192288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tight focusing with a binary microaxicon.
    Kotlyar VV; Stafeev SS; O'Faolain L; Soifer VA
    Opt Lett; 2011 Aug; 36(16):3100-2. PubMed ID: 21847173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface.
    Hu K; Chen Z; Pu J
    Opt Lett; 2012 Aug; 37(16):3303-5. PubMed ID: 23381238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sub-wavelength annular-slit-assisted superoscillatory lens for longitudinally-polarized super-resolution focusing.
    Kim H; Rogers ETF
    Sci Rep; 2020 Jan; 10(1):1328. PubMed ID: 31992730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 1.5  kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier.
    Huang L; Ma P; Tao R; Shi C; Wang X; Zhou P
    Appl Opt; 2015 Apr; 54(10):2880-4. PubMed ID: 25967203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.
    Man Z; Bai Z; Zhang S; Li J; Li X; Ge X; Zhang Y; Fu S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):1014-1020. PubMed ID: 29877346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam.
    Jiang Y; Li X; Gu M
    Opt Lett; 2013 Aug; 38(16):2957-60. PubMed ID: 24104620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.