These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30985916)

  • 1. Double-wavelet transform for multisubject task-induced functional magnetic resonance imaging data.
    Zhou M; Badre D; Kang H
    Biometrics; 2019 Sep; 75(3):1029-1040. PubMed ID: 30985916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-wavelet transform for multi-subject resting state functional magnetic resonance imaging data.
    Zhou M; Boyd BD; Taylor WD; Kang H
    Stat Med; 2021 Dec; 40(30):6762-6776. PubMed ID: 34596260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-Spectral Mixed Effects Model for Functional Magnetic Resonance Imaging Data.
    Kang H; Ombao H; Linkletter C; Long N; Badre D
    J Am Stat Assoc; 2012; 107(498):568-577. PubMed ID: 25400305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet-based regularity analysis reveals recurrent spatiotemporal behavior in resting-state fMRI.
    Smith RX; Jann K; Ances B; Wang DJ
    Hum Brain Mapp; 2015 Sep; 36(9):3603-20. PubMed ID: 26096080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data.
    Castruccio S; Ombao H; Genton MG
    Biometrics; 2018 Sep; 74(3):823-833. PubMed ID: 29359375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial-temporal modelling of fMRI data through spatially regularized mixture of hidden process models.
    Shen Y; Mayhew SD; Kourtzi Z; Tiňo P
    Neuroimage; 2014 Jan; 84():657-71. PubMed ID: 24041873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resampling methods for improved wavelet-based multiple hypothesis testing of parametric maps in functional MRI.
    Sendur L; Suckling J; Whitcher B; Bullmore E
    Neuroimage; 2007 Oct; 37(4):1186-94. PubMed ID: 17651989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI.
    Chaari L; Ciuciu P; Mériaux S; Pesquet JC
    MAGMA; 2014 Dec; 27(6):509-29. PubMed ID: 24619431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.
    Zhang L; Guindani M; Versace F; Vannucci M
    Neuroimage; 2014 Jul; 95():162-75. PubMed ID: 24650600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatial mixture approach to inferring sub-ROI spatio-temporal patterns from rapid event-related fMRI data.
    Shen Y; Mayhew S; Kourtzi Z; Tino P
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):657-64. PubMed ID: 24579197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.
    Zhang Q; Yang X; Yao L; Zhao X
    Neuroscience; 2017 Mar; 346():64-73. PubMed ID: 28108257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the spatial and temporal dependence in FMRI data.
    Derado G; Bowman FD; Kilts CD
    Biometrics; 2010 Sep; 66(3):949-57. PubMed ID: 19912175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting the potential of three dimensional spatial wavelet analysis to explore nesting of temporal oscillations and spatial variance in simultaneous EEG-fMRI data.
    Schultze-Kraft M; Becker R; Breakspear M; Ritter P
    Prog Biophys Mol Biol; 2011 Mar; 105(1-2):67-79. PubMed ID: 21094179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics.
    Khullar S; Michael A; Correa N; Adali T; Baum SA; Calhoun VD
    Neuroimage; 2011 Feb; 54(4):2867-84. PubMed ID: 21034833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified framework for group independent component analysis for multi-subject fMRI data.
    Guo Y; Pagnoni G
    Neuroimage; 2008 Sep; 42(3):1078-93. PubMed ID: 18650105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis.
    Wang N; Zeng W; Shi Y; Ren T; Jing Y; Yin J; Yang J
    J Neurosci Methods; 2015 May; 246():75-96. PubMed ID: 25791013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet-based estimation of hemodynamic response function from fMRI data.
    Srikanth R; Ramakrishnan AG
    Int J Neural Syst; 2006 Apr; 16(2):125-38. PubMed ID: 16688852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification.
    Spinnato J; Roubaud MC; Burle B; Torrésani B
    J Neural Eng; 2015 Jun; 12(3):036013. PubMed ID: 25973635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing wavelet deep learning network to classify different states of task-fMRI for verifying activation regions.
    Gui S; Gui R
    Int J Neurosci; 2020 Jun; 130(6):583-594. PubMed ID: 31778088
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.