These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30986455)
41. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Matsuzawa T; Kaneko S; Yaoi K Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202 [TBL] [Abstract][Full Text] [Related]
42. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. Joo JC; Pack SP; Kim YH; Yoo YJ J Biotechnol; 2011 Jan; 151(1):56-65. PubMed ID: 20959126 [TBL] [Abstract][Full Text] [Related]
43. Improving the thermostability of a GH11 xylanase by directed evolution and rational design guided by B-factor analysis. Xing H; Zou G; Liu C; Chai S; Yan X; Li X; Liu R; Yang Y; Zhou Z Enzyme Microb Technol; 2021 Feb; 143():109720. PubMed ID: 33375980 [TBL] [Abstract][Full Text] [Related]
44. The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase. Wu X; Zhang S; Zhang Q; Zhao Y; Chen G; Guo W; Wang L Appl Microbiol Biotechnol; 2020 Oct; 104(20):8735-8745. PubMed ID: 32865611 [TBL] [Abstract][Full Text] [Related]
45. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Wang Y; Fu Z; Huang H; Zhang H; Yao B; Xiong H; Turunen O Bioresour Technol; 2012 May; 112():275-9. PubMed ID: 22425398 [TBL] [Abstract][Full Text] [Related]
46. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase. Xiong K; Hou J; Jiang Y; Li X; Teng C; Li Q; Fan G; Yang R; Zhang C BMC Biotechnol; 2019 Jul; 19(1):51. PubMed ID: 31345213 [TBL] [Abstract][Full Text] [Related]
47. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme. Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197 [TBL] [Abstract][Full Text] [Related]
48. Improvement of the Thermostability of Xylanase from Tian YS; Xu J; Chen L; Fu XY; Peng RH; Yao QH J Microbiol Biotechnol; 2017 Oct; 27(10):1783-1789. PubMed ID: 28851206 [TBL] [Abstract][Full Text] [Related]
49. Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Cheng YS; Chen CC; Huang JW; Ko TP; Huang Z; Guo RT Appl Microbiol Biotechnol; 2015 Nov; 99(22):9503-10. PubMed ID: 26088174 [TBL] [Abstract][Full Text] [Related]
50. Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. Dumon C; Varvak A; Wall MA; Flint JE; Lewis RJ; Lakey JH; Morland C; Luginbühl P; Healey S; Todaro T; DeSantis G; Sun M; Parra-Gessert L; Tan X; Weiner DP; Gilbert HJ J Biol Chem; 2008 Aug; 283(33):22557-64. PubMed ID: 18515360 [TBL] [Abstract][Full Text] [Related]
51. Endo-xylanase GH11 activation by the fungal metabolite eugenitin. Andrioli WJ; Damásio AR; Silva TM; da Silva VB; Maller A; Nanayakkara NP; Silva CH; Polizeli ML; Bastos JK Biotechnol Lett; 2012 Aug; 34(8):1487-92. PubMed ID: 22481300 [TBL] [Abstract][Full Text] [Related]
53. Stability and activity of Dictyoglomus thermophilum GH11 xylanase and its disulphide mutant at high pressure and temperature. Li H; Voutilainen S; Ojamo H; Turunen O Enzyme Microb Technol; 2015 Mar; 70():66-71. PubMed ID: 25659634 [TBL] [Abstract][Full Text] [Related]
54. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Acevedo JP; Reetz MT; Asenjo JA; Parra LP Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313 [TBL] [Abstract][Full Text] [Related]
55. Improvement of alkali stability and thermostability of Paenibacillus campinasensis Family-11 xylanase by directed evolution and site-directed mutagenesis. Zheng H; Liu Y; Sun M; Han Y; Wang J; Sun J; Lu F J Ind Microbiol Biotechnol; 2014 Jan; 41(1):153-62. PubMed ID: 24212471 [TBL] [Abstract][Full Text] [Related]
56. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Hu H; Chen K; Li L; Long L; Ding S J Microbiol Biotechnol; 2017 Apr; 27(4):775-784. PubMed ID: 28173691 [TBL] [Abstract][Full Text] [Related]
57. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Zhang Y; An J; Yang G; Zhang X; Xie Y; Chen L; Feng Y Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):948-957. PubMed ID: 27563004 [TBL] [Abstract][Full Text] [Related]
58. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052 [TBL] [Abstract][Full Text] [Related]
59. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics. Li Q; Sun B; Jia H; Hou J; Yang R; Xiong K; Xu Y; Li X Int J Biol Macromol; 2017 Aug; 101():366-372. PubMed ID: 28356235 [TBL] [Abstract][Full Text] [Related]
60. Purification and characterization of a thermostable xylanase from Saccharopolyspora pathumthaniensis S582 isolated from the gut of a termite. Sinma K; Khucharoenphaisan K; Kitpreechavanich V; Tokuyama S Biosci Biotechnol Biochem; 2011; 75(10):1957-63. PubMed ID: 21979072 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]