These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 30986680)
1. "More crop per drop": Exploring India's cereal water use since 2005. Kayatz B; Harris F; Hillier J; Adhya T; Dalin C; Nayak D; Green RF; Smith P; Dangour AD Sci Total Environ; 2019 Jul; 673():207-217. PubMed ID: 30986680 [TBL] [Abstract][Full Text] [Related]
2. Alternative cereals can improve water use and nutrient supply in India. Davis KF; Chiarelli DD; Rulli MC; Chhatre A; Richter B; Singh D; DeFries R Sci Adv; 2018 Jul; 4(7):eaao1108. PubMed ID: 29978036 [TBL] [Abstract][Full Text] [Related]
3. Climate resilience of dry season cereals in India. DeFries R; Liang S; Chhatre A; Davis KF; Ghosh S; Rao ND; Singh D Sci Rep; 2023 Jun; 13(1):9960. PubMed ID: 37340018 [TBL] [Abstract][Full Text] [Related]
4. Spatial analysis of energy use and GHG emissions from cereal production in India. Rao ND; Poblete-Cazenave M; Bhalerao R; Davis KF; Parkinson S Sci Total Environ; 2019 Mar; 654():841-849. PubMed ID: 30448673 [TBL] [Abstract][Full Text] [Related]
5. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change]. Wang XY; Yang XG; Sun S; Xie WJ Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918 [TBL] [Abstract][Full Text] [Related]
6. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India. Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009 [TBL] [Abstract][Full Text] [Related]
7. Assessing the sustainability of post-Green Revolution cereals in India. Davis KF; Chhatre A; Rao ND; Singh D; Ghosh-Jerath S; Mridul A; Poblete-Cazenave M; Pradhan N; DeFries R Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25034-25041. PubMed ID: 31754037 [TBL] [Abstract][Full Text] [Related]
8. [Carbon footprint of major grain crops in the middle and lower reaches of the Yangtze River during 2011-2020]. Zhang Y; Gu JY; Wang C; Wang WL; Zhang WY; Gu JF; Liu LJ; Yang JC; Zhang H Ying Yong Sheng Tai Xue Bao; 2023 Dec; 34(12):3364-3372. PubMed ID: 38511376 [TBL] [Abstract][Full Text] [Related]
9. Trading water: virtual water flows through interstate cereal trade in India. Harris F; Dalin C; Cuevas S; Lakshmikantha NR; Adhya T; Joy EJM; Scheelbeek PFD; Kayatz B; Nicholas O; Shankar B; Dangour AD; Green R Environ Res Lett; 2020 Dec; 15(12):. PubMed ID: 33850516 [TBL] [Abstract][Full Text] [Related]
10. Water Footprint of crop productions: A review. Lovarelli D; Bacenetti J; Fiala M Sci Total Environ; 2016 Apr; 548-549():236-251. PubMed ID: 26802352 [TBL] [Abstract][Full Text] [Related]
11. The water use of Indian diets and socio-demographic factors related to dietary blue water footprint. Harris F; Green RF; Joy EJ; Kayatz B; Haines A; Dangour AD Sci Total Environ; 2017 Jun; 587-588():128-136. PubMed ID: 28215793 [TBL] [Abstract][Full Text] [Related]
12. [Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013.]. Huang XM; Chen CQ; Chen MZ; Song ZW; Deng AX; Zhang J; Zheng CY; Zhang WJ Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3307-3315. PubMed ID: 29726158 [TBL] [Abstract][Full Text] [Related]
13. Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes. Amanullah ; Khalid S; Khalil F; Elshikh MS; Alwahibi MS; Alkahtani J; Imranuddin ; Imran Sci Rep; 2021 Jun; 11(1):12585. PubMed ID: 34131225 [TBL] [Abstract][Full Text] [Related]
14. A forecast of staple crop production in Burkina Faso to enable early warnings of shortages in domestic food availability. Laudien R; Schauberger B; Waid J; Gornott C Sci Rep; 2022 Jan; 12(1):1638. PubMed ID: 35102220 [TBL] [Abstract][Full Text] [Related]
15. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Cassman KG Proc Natl Acad Sci U S A; 1999 May; 96(11):5952-9. PubMed ID: 10339523 [TBL] [Abstract][Full Text] [Related]
16. Scalable diversification options delivers sustainable and nutritious food in Indo-Gangetic plains. Gora MK; Kumar S; Jat HS; Kakraliya SK; Choudhary M; Dhaka AK; Jat RD; Kakraliya M; Sharma PC; Jat ML Sci Rep; 2022 Aug; 12(1):14371. PubMed ID: 35999342 [TBL] [Abstract][Full Text] [Related]
17. A high-resolution assessment of climate change impact on water footprints of cereal production in India. Mali SS; Shirsath PB; Islam A Sci Rep; 2021 Apr; 11(1):8715. PubMed ID: 33888847 [TBL] [Abstract][Full Text] [Related]
18. Global implications of regional grain production through virtual water trade. Masud MB; Wada Y; Goss G; Faramarzi M Sci Total Environ; 2019 Apr; 659():807-820. PubMed ID: 31096411 [TBL] [Abstract][Full Text] [Related]
19. Agricultural intensification was associated with crop diversification in India (1947-2014). Smith JC; Ghosh A; Hijmans RJ PLoS One; 2019; 14(12):e0225555. PubMed ID: 31826001 [TBL] [Abstract][Full Text] [Related]
20. Greenhouse gas emissions and water footprints of typical dietary patterns in India. Green RF; Joy EJM; Harris F; Agrawal S; Aleksandrowicz L; Hillier J; Macdiarmid JI; Milner J; Vetter SH; Smith P; Haines A; Dangour AD Sci Total Environ; 2018 Dec; 643():1411-1418. PubMed ID: 30189557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]