BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30986755)

  • 1. Comparison of cell mechanical measurements provided by Atomic Force Microscopy (AFM) and Micropipette Aspiration (MPA).
    Daza R; González-Bermúdez B; Cruces J; De la Fuente M; Plaza GR; Arroyo-Hernández M; Elices M; Pérez-Rigueiro J; Guinea GV
    J Mech Behav Biomed Mater; 2019 Jul; 95():103-115. PubMed ID: 30986755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of work of adhesion of biological cell under AFM bead indentation.
    Zhu X; Siamantouras E; Liu KK; Liu X
    J Mech Behav Biomed Mater; 2016 Mar; 56():77-86. PubMed ID: 26688423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates.
    Liu H; Sun Y; Simmons CA
    J Biomech; 2013 Jul; 46(11):1967-71. PubMed ID: 23746597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements.
    Vaiani L; Migliorini E; Cavalcanti-Adam EA; Uva AE; Fiorentino M; Gattullo M; Manghisi VM; Boccaccio A
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111860. PubMed ID: 33579492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Properties of Chondrocytes Estimated from Different Models of Micropipette Aspiration.
    Li Y; Li Y; Zhang Q; Wang L; Guo M; Wu X; Guo Y; Chen J; Chen W
    Biophys J; 2019 Jun; 116(11):2181-2194. PubMed ID: 31103225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Measurement of Elastic Properties of Cells by Micropipette Aspiration and Its Application to Lymphocytes.
    Esteban-Manzanares G; González-Bermúdez B; Cruces J; De la Fuente M; Li Q; Guinea GV; Pérez-Rigueiro J; Elices M; Plaza GR
    Ann Biomed Eng; 2017 May; 45(5):1375-1385. PubMed ID: 28097526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterising the mechanical properties of haematopoietic and mesenchymal stem cells using micromanipulation and atomic force microscopy.
    Du M; Kavanagh D; Kalia N; Zhang Z
    Med Eng Phys; 2019 Nov; 73():18-29. PubMed ID: 31405755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Elastic Properties of Soft and Sticky Materials Using AFM.
    Bouchonville N; Nicolas A
    Methods Mol Biol; 2019; 1886():281-290. PubMed ID: 30374874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographical and mechanical characterization of living eukaryotic cells on opaque substrates: development of a general procedure and its application to the study of non-adherent lymphocytes.
    Daza R; Cruces J; Arroyo-Hernández M; Marí-Buyé N; De la Fuente M; Plaza GR; Elices M; Pérez-Rigueiro J; Guinea GV
    Phys Biol; 2015 Mar; 12(2):026005. PubMed ID: 25787320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the determination of elastic moduli of cells by AFM based indentation.
    Ding Y; Xu GK; Wang GF
    Sci Rep; 2017 Apr; 7():45575. PubMed ID: 28368053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of mechanical properties of insulin crystals by atomic force microscopy.
    Guo S; Akhremitchev BB
    Langmuir; 2008 Feb; 24(3):880-7. PubMed ID: 18163652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth-sensing analysis of cytoskeleton organization based on AFM data.
    Pogoda K; Jaczewska J; Wiltowska-Zuber J; Klymenko O; Zuber K; Fornal M; Lekka M
    Eur Biophys J; 2012 Jan; 41(1):79-87. PubMed ID: 22038077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of SEM vacuum on bone micromechanics using in situ AFM.
    Jimenez-Palomar I; Shipov A; Shahar R; Barber AH
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):149-55. PubMed ID: 22100089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of micromechanical properties of hard sphere filled composite hydrogels by atomic force microscopy and finite element simulations.
    Tang G; Galluzzi M; Biswas CS; Stadler FJ
    J Mech Behav Biomed Mater; 2018 Feb; 78():496-504. PubMed ID: 29248847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical measurements of polyethylene glycol hydrogels using atomic force microscopy.
    Drira Z; Yadavalli VK
    J Mech Behav Biomed Mater; 2013 Feb; 18():20-8. PubMed ID: 23237877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring Elastic Properties of Single Cancer Cells by AFM.
    Lekka M; Pabijan J
    Methods Mol Biol; 2019; 1886():315-324. PubMed ID: 30374876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of texture properties of banana fruit cells with an atomic force microscope: A case study on elastic modulus and stiffness.
    Khodabakhshian R; Naeemi A; Bayati MR
    J Texture Stud; 2021 Jun; 52(3):389-399. PubMed ID: 33675545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements.
    Feng Y; Li M
    Nanoscale; 2023 Aug; 15(32):13346-13358. PubMed ID: 37526589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of monolayer graphene oxide.
    Suk JW; Piner RD; An J; Ruoff RS
    ACS Nano; 2010 Nov; 4(11):6557-64. PubMed ID: 20942443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.