These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 30986878)
1. Finite Element Analysis and Biomechanical Testing of the New MiniMIS Short Stem. Trieb K; Huber D; Sonntag R; Kretzer JP Z Orthop Unfall; 2019 Apr; 157(2):188-193. PubMed ID: 30986878 [TBL] [Abstract][Full Text] [Related]
2. Mechanical and numerical characterization of ceramic femoral components for hip resurfacing arthroplasty. Vogel D; Liebelt M; Kalkowsky F; Oberbach T; Delfosse D; Bader R Proc Inst Mech Eng H; 2019 Sep; 233(9):883-891. PubMed ID: 31210590 [TBL] [Abstract][Full Text] [Related]
3. Endurance testing and finite element simulation of a modified hip stem for integration of an energy harvesting system. Lange HE; Bader R; Kluess D Proc Inst Mech Eng H; 2021 Sep; 235(9):985-992. PubMed ID: 34137316 [TBL] [Abstract][Full Text] [Related]
4. Pre-clinical evaluation of ceramic femoral head resurfacing prostheses using computational models and mechanical testing. Dickinson AS; Browne M; Wilson KC; Leffers JR; Taylor AC Proc Inst Mech Eng H; 2011 Sep; 225(9):866-76. PubMed ID: 22070024 [TBL] [Abstract][Full Text] [Related]
5. Effect of neck length on third-generation ceramic head failure; finite element and retrieval analysis. Lee YK; Lee JC; Ha YC; Koo KH J Orthop Sci; 2014 Jul; 19(4):587-97. PubMed ID: 24789359 [TBL] [Abstract][Full Text] [Related]
6. Metaphyseal anchoring short stem hip arthroplasty provides a more physiological load transfer: a comparative finite element analysis study. Yan SG; Chevalier Y; Liu F; Hua X; Schreiner A; Jansson V; Schmidutz F J Orthop Surg Res; 2020 Oct; 15(1):498. PubMed ID: 33121506 [TBL] [Abstract][Full Text] [Related]
7. Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis. Tatani I; Panagopoulos A; Diamantakos I; Sakellaropoulos G; Pantelakis S; Megas P Trials; 2019 Jun; 20(1):359. PubMed ID: 31208433 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Head Displacement and Disassembly Force With Increasing Assembly Load at the Head/Trunnion Junction of a Total Hip Arthroplasty Prosthesis. Ramoutar DN; Crosnier EA; Shivji F; Miles AW; Gill HS J Arthroplasty; 2017 May; 32(5):1675-1678. PubMed ID: 28063775 [TBL] [Abstract][Full Text] [Related]
9. Bone preserving level of osteotomy in short-stem total hip arthroplasty does not influence stress shielding dimensions - a comparing finite elements analysis. Burchard R; Braas S; Soost C; Graw JA; Schmitt J BMC Musculoskelet Disord; 2017 Aug; 18(1):343. PubMed ID: 28784121 [TBL] [Abstract][Full Text] [Related]
10. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical Analysis of a Novel Intercalary Prosthesis for Humeral Diaphyseal Segmental Defect Reconstruction. Zhao LM; Tian DM; Wei Y; Zhang JH; Di ZL; He ZY; Hu YC Orthop Surg; 2018 Feb; 10(1):23-31. PubMed ID: 29484857 [TBL] [Abstract][Full Text] [Related]
12. The biomechanical effect of anteversion and modular neck offset on stress shielding for short-stem versus conventional long-stem hip implants. Goshulak P; Samiezadeh S; Aziz MS; Bougherara H; Zdero R; Schemitsch EH Med Eng Phys; 2016 Mar; 38(3):232-40. PubMed ID: 26774671 [TBL] [Abstract][Full Text] [Related]
13. Hip joint prosthesis design: effect of stem introducers. Mathias KJ; Leahy JC; Heaton A; Deans WF; Hukins DW Med Eng Phys; 1998 Nov; 20(8):620-4. PubMed ID: 9888241 [TBL] [Abstract][Full Text] [Related]
14. Failure analysis of a ceramic bearing acetabular component. Poggie RA; Turgeon TR; Coutts RD J Bone Joint Surg Am; 2007 Feb; 89(2):367-75. PubMed ID: 17272452 [TBL] [Abstract][Full Text] [Related]
15. The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses. Lennon AB; McCormack BA; Prendergast PJ Med Eng Phys; 2003 Dec; 25(10):833-41. PubMed ID: 14630471 [TBL] [Abstract][Full Text] [Related]
16. The use of a proximal femoral nail as a hip prosthesis: A biomechanical analysis of a newly designed implant. Konya MN; Korkusuz F; Maralcan G; Demir T; Aslan A Proc Inst Mech Eng H; 2018 Feb; 232(2):200-206. PubMed ID: 29298621 [TBL] [Abstract][Full Text] [Related]
17. Finite element investigation of the effect of a bifid arch on loading of the vertebral isthmus. Quah C; Yeoman MS; Cizinauskas A; Cooper KC; Peirce NS; McNally DS; Boszczyk BM Spine J; 2014 Apr; 14(4):675-82. PubMed ID: 24268389 [TBL] [Abstract][Full Text] [Related]
18. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis]. Massin P; Astoin E; Lavaste F Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057 [TBL] [Abstract][Full Text] [Related]
19. Anatomical and biomechanical investigations of the iliotibial tract. Birnbaum K; Siebert CH; Pandorf T; Schopphoff E; Prescher A; Niethard FU Surg Radiol Anat; 2004 Dec; 26(6):433-46. PubMed ID: 15378277 [TBL] [Abstract][Full Text] [Related]
20. The modular endoprosthesis for mandibular body replacement. Part 1: mechanical testing of the reconstruction. Wong RC; Tideman H; Merkx MA; Jansen J; Goh SM J Craniomaxillofac Surg; 2012 Dec; 40(8):e479-86. PubMed ID: 22520832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]