BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30987140)

  • 1. Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light.
    Bortot Coelho FE; Gionco C; Paganini MC; Calza P; Magnacca G
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of filtration and photocatalysis to DOM removal and fouling mechanism during in-situ UV-LED photocatalytic ceramic membrane process.
    Li C; Sun W; Lu Z; Ao X; Li S; Wang Z; Qi F; Ismailova O
    Water Res; 2022 Nov; 226():119298. PubMed ID: 36327584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties.
    Ma N; Zhang Y; Quan X; Fan X; Zhao H
    Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic membrane coated with α-Fe
    Guo Y; Liu Q; Tang X; Liang H; Li G; Yang L; Wang L; Li X; Sun Y
    Chemosphere; 2023 Nov; 341():140114. PubMed ID: 37689150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated adsorption-solar photocatalytic membrane reactor for degradation of hazardous Congo red using Fe-doped ZnO and Fe-doped ZnO/rGO nanocomposites.
    Ong CB; Mohammad AW; Ng LY
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33856-33869. PubMed ID: 29943245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humic acid removal and easy-cleanability using temperature-responsive ZrO2 tubular membranes grafted with poly(N-isopropylacrylamide) brush chains.
    Zhao Y; Zhou S; Li M; Xue A; Zhang Y; Wang J; Xing W
    Water Res; 2013 May; 47(7):2375-86. PubMed ID: 23466218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.
    Kim KJ; Jang A
    Chemosphere; 2018 Apr; 196():440-452. PubMed ID: 29329081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of forward osmosis membrane with naturally-available humic acid: Towards simultaneously improved filtration performance and antifouling properties.
    Guan YF; Huang BC; Wang YJ; Gong B; Lu X; Yu HQ
    Environ Int; 2019 Oct; 131():105045. PubMed ID: 31352263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The removal of typical pollutants in secondary effluent by the combined process of powdered activated carbon-ultrafiltration.
    Sun L; He N; Yu T; Duan X; Feng C; Zhang Y
    Water Sci Technol; 2017 Mar; 75(5-6):1485-1493. PubMed ID: 28333064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane.
    Zhang X; Fan L; Roddick FA
    Membranes (Basel); 2018 Feb; 8(1):. PubMed ID: 29389873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physical impact of organic fouling layers on bacterial adhesion during nanofiltration.
    Heffernan R; Habimana O; Semião AJ; Cao H; Safari A; Casey E
    Water Res; 2014 Dec; 67():118-28. PubMed ID: 25265304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms.
    Wang J; Wang L; Miao R; Lv Y; Wang X; Meng X; Yang R; Zhang X
    Water Res; 2016 Mar; 91():203-13. PubMed ID: 26799710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAMAM templated N,Pt co-doped TiO
    Nzaba SKM; Ntsendwana B; Mamba BB; Kuvarega AT
    Environ Sci Pollut Res Int; 2018 May; 25(15):15146-15158. PubMed ID: 29560589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite impacts of K
    Li B; He X; Wang P; Liu Q; Qiu W; Ma J
    Water Res; 2020 Sep; 183():116006. PubMed ID: 32585389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.
    Maleki A; Safari M; Shahmoradi B; Zandsalimi Y; Daraei H; Gharibi F
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16875-80. PubMed ID: 26104905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition.
    Chang H; Liang H; Qu F; Ma J; Ren N; Li G
    J Environ Sci (China); 2016 May; 43():177-186. PubMed ID: 27155423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.
    Zhou M; Meng F
    Water Res; 2015 Dec; 87():311-9. PubMed ID: 26433779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Photo-Fenton ceramic membranes: Synthesis, characterization and antifouling performance.
    Sun S; Yao H; Fu W; Hua L; Zhang G; Zhang W
    Water Res; 2018 Nov; 144():690-698. PubMed ID: 30096694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of membrane fouling mechanism of intracellular organic matter during ultrafiltration.
    Huang W; Zhu Y; Dong B; Lv W; Yuan Q; Zhou W; Lv W
    Sci Rep; 2021 Jan; 11(1):1012. PubMed ID: 33441648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.