BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30987162)

  • 21. On the Use of Rotary-Wing Aircraft to Sample Near-Surface Thermodynamic Fields: Results from Recent Field Campaigns.
    Lee TR; Buban M; Dumas E; Baker CB
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned Aerial Systems: A Study From Chornobyl.
    Connor DT; Wood K; Martin PG; Goren S; Megson-Smith D; Verbelen Y; Chyzhevskyi I; Kirieiev S; Smith NT; Richardson T; Scott TB
    Front Robot AI; 2019; 6():149. PubMed ID: 33501164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lagrangian approach to analysis and engineering of two generic transport problems in enhanced subsurface flows.
    Speetjens M; Varghese S; Trieling R
    J Contam Hydrol; 2019 Jul; 224():103482. PubMed ID: 31084920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion and Brownian motion in Lagrangian coordinates.
    Fyrillas MM; Nomura KK
    J Chem Phys; 2007 Apr; 126(16):164510. PubMed ID: 17477617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating satellite and unmanned aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China.
    Wang D; Song Q; Liao X; Ye H; Shao Q; Fan J; Cong N; Xin X; Yue H; Zhang H
    Sci Total Environ; 2020 Dec; 746():140327. PubMed ID: 32768776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atmospheric electrical detection of organized convection.
    Markson R
    Science; 1975 Jun; 188(4194):1171-7. PubMed ID: 17818153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Material and debris transport patterns in Moreton Bay, Australia: The influence of Lagrangian coherent structures.
    Suara K; Khanarmuei M; Ghosh A; Yu Y; Zhang H; Soomere T; Brown RJ
    Sci Total Environ; 2020 Jun; 721():137715. PubMed ID: 32172112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A critical comparison of Lagrangian methods for coherent structure detection.
    Hadjighasem A; Farazmand M; Blazevski D; Froyland G; Haller G
    Chaos; 2017 May; 27(5):053104. PubMed ID: 28576102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computing Lagrangian coherent structures from their variational theory.
    Farazmand M; Haller G
    Chaos; 2012 Mar; 22(1):013128. PubMed ID: 22463004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Lagrangian coherent structures to analyze fluid mixing by cilia.
    Lukens S; Yang X; Fauci L
    Chaos; 2010 Mar; 20(1):017511. PubMed ID: 20370301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors.
    Olcay AB; Pottebaum TS; Krueger PS
    Chaos; 2010 Mar; 20(1):017506. PubMed ID: 20370296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluid transport and coherent structures of translating and flapping wings.
    Eldredge JD; Chong K
    Chaos; 2010 Mar; 20(1):017509. PubMed ID: 20370299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability of the Malvinas Current.
    Beron-Vera FJ; Bodnariuk N; Saraceno M; Olascoaga MJ; Simionato C
    Chaos; 2020 Jan; 30(1):013152. PubMed ID: 32013500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign.
    Barbieri L; Kral ST; Bailey SCC; Frazier AE; Jacob JD; Reuder J; Brus D; Chilson PB; Crick C; Detweiler C; Doddi A; Elston J; Foroutan H; González-Rocha J; Greene BR; Guzman MI; Islam ALHA; Kemppinen O; Lawrence D; Pillar-Little EA; Ross SD; Sama M; Schmale DG; Schuyler TJ; Shankar A; Smith SW; Waugh S; Dixon C; Borenstein S; Boer G
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A MCREXS modelling approach for the simulation of a radiological dispersal device.
    Ivan L; Hummel D; Lebel L
    J Environ Radioact; 2018 Dec; 192():551-564. PubMed ID: 30142583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of numerical models to predict the atmospheric dispersion of radionuclides.
    Leelőssy Á; Lagzi I; Kovács A; Mészáros R
    J Environ Radioact; 2018 Feb; 182():20-33. PubMed ID: 29179047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal Polygon Decomposition for UAV Survey Coverage Path Planning in Wind.
    Coombes M; Fletcher T; Chen WH; Liu C
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors.
    Lai ACK; Chen FZ
    Atmos Environ (1994); 2007 Aug; 41(25):5249-5256. PubMed ID: 32288553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating the Vertical Structure of Weather-Induced Mission Costs for Small UAS.
    Bird JJ; Richardson SJ; Langelaan JW
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate group velocity estimation for unmanned aerial vehicle-based acoustic atmospheric tomography.
    Rogers KJ; Finn A
    J Acoust Soc Am; 2017 Feb; 141(2):1269. PubMed ID: 28253662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.