BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30987277)

  • 1. Unsymmetrical Diboron Reagents: Application in Borylation Reactions of Unsaturated Bonds.
    Ding S; Xu L; Miao Z
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30987277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Synthesis Developments of Organoboron Compounds via Metal-Free Catalytic Borylation of Alkynes and Alkenes.
    Wen Y; Deng C; Xie J; Kang X
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-catalyzed reactions of diborons for synthesis of organoboron compounds.
    Ishiyama T; Miyaura N
    Chem Rec; 2004; 3(5):271-80. PubMed ID: 14762827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium-catalyzed borylation of aryl and heteroaryl halides utilizing tetrakis(dimethylamino)diboron: one step greener.
    Molander GA; Trice SL; Kennedy SM
    Org Lett; 2012 Sep; 14(18):4814-7. PubMed ID: 22946672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium-catalyzed cross-coupling reaction of bis(pinacolato)diboron with 1-alkenyl halides or triflates: convenient synthesis of unsymmetrical 1,3-dienes via the borylation-coupling sequence.
    Takagi J; Takahashi K; Ishiyama T; Miyaura N
    J Am Chem Soc; 2002 Jul; 124(27):8001-6. PubMed ID: 12095344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Methods to the Synthesis of β-Boryl Acyls, Imines and Nitriles.
    Das KK; Mahato S; Hazra S; Panda S
    Chem Rec; 2022 Apr; 22(4):e202100290. PubMed ID: 35088513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and Scope of Nickel-Catalyzed Decarbonylative Borylation of Carboxylic Acid Fluorides.
    Malapit CA; Bour JR; Laursen SR; Sanford MS
    J Am Chem Soc; 2019 Oct; 141(43):17322-17330. PubMed ID: 31617708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iridium(I)-catalyzed vinylic C-H borylation of 1-cycloalkenecarboxylates with bis(pinacolato)diboron.
    Sasaki I; Doi H; Hashimoto T; Kikuchi T; Ito H; Ishiyama T
    Chem Commun (Camb); 2013 Sep; 49(68):7546-8. PubMed ID: 23873407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium-catalyzed borylation of primary alkyl bromides.
    Joshi-Pangu A; Ma X; Diane M; Iqbal S; Kribs RJ; Huang R; Wang CY; Biscoe MR
    J Org Chem; 2012 Aug; 77(15):6629-33. PubMed ID: 22774861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt-Catalyzed 1,1-Diboration of Terminal Alkynes: Scope, Mechanism, and Synthetic Applications.
    Krautwald S; Bezdek MJ; Chirik PJ
    J Am Chem Soc; 2017 Mar; 139(10):3868-3875. PubMed ID: 28199104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iridium-catalyzed ortho-C-H borylation of aromatic aldimines derived from pentafluoroaniline with bis(pinacolate)diboron.
    Sasaki I; Amou T; Ito H; Ishiyama T
    Org Biomol Chem; 2014 Apr; 12(13):2041-4. PubMed ID: 24553844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective Rh-catalyzed domino transformations of alkynylcyclohexadienones with organoboron reagents.
    Keilitz J; Newman SG; Lautens M
    Org Lett; 2013 Mar; 15(5):1148-51. PubMed ID: 23421491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iridium-catalyzed C-H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism.
    Larsen MA; Hartwig JF
    J Am Chem Soc; 2014 Mar; 136(11):4287-99. PubMed ID: 24506058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, generation, and synthetic application of borylzincate: borylation of aryl halides and borylzincation of benzynes/terminal alkyne.
    Nagashima Y; Takita R; Yoshida K; Hirano K; Uchiyama M
    J Am Chem Soc; 2013 Dec; 135(50):18730-3. PubMed ID: 24266767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, Structure, and Reactivity of Anionic sp(2) -sp(3) Diboron Compounds: Readily Accessible Boryl Nucleophiles.
    Pietsch S; Neeve EC; Apperley DC; Bertermann R; Mo F; Qiu D; Cheung MS; Dang L; Wang J; Radius U; Lin Z; Kleeberg C; Marder TB
    Chemistry; 2015 May; 21(19):7082-98. PubMed ID: 25877472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron-Heteroatom Addition Reactions via Borylative Heterocyclization: Oxyboration, Aminoboration, and Thioboration.
    Issaian A; Tu KN; Blum SA
    Acc Chem Res; 2017 Oct; 50(10):2598-2609. PubMed ID: 28933550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Chiral Ligands for the Transition-Metal-Catalyzed Enantioselective Silylation and Borylation of C-H Bonds.
    Su B; Hartwig JF
    Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202113343. PubMed ID: 34729899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetracoordinate Boron Intermediates Enable Unconventional Transformations.
    Yang K; Song Q
    Acc Chem Res; 2021 May; 54(9):2298-2312. PubMed ID: 33852276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds.
    Zhang X; Friedrich A; Marder TB
    Chemistry; 2022 Jul; 28(42):e202201329. PubMed ID: 35510606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.