These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 30987641)
21. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. Li J; Zhang QY; Gao ZH; Wang F; Duan K; Ye ZW; Gao QH Gene; 2013 Sep; 527(1):215-27. PubMed ID: 23806759 [TBL] [Abstract][Full Text] [Related]
22. Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Cai Z; Li G; Lin C; Shi T; Zhai L; Chen Y; Huang G Microbiol Res; 2013 Jul; 168(6):340-350. PubMed ID: 23602122 [TBL] [Abstract][Full Text] [Related]
23. A putative effector of the rubber-tree powdery mildew fungus has elicitor activity that can trigger plant immunity. Li X; Liu M; Liu Y; Zhao W; Li S; Liu W; Lin C; Miao W Planta; 2022 Jan; 255(2):33. PubMed ID: 34997357 [TBL] [Abstract][Full Text] [Related]
24. Transcriptome profiling in susceptible and tolerant rubber tree clones in response to cassiicolin Cas1, a necrotrophic effector from Corynespora cassiicola. Ribeiro S; Label P; Garcia D; Montoro P; Pujade-Renaud V PLoS One; 2021; 16(7):e0254541. PubMed ID: 34320014 [TBL] [Abstract][Full Text] [Related]
25. Comparative proteome analysis of rubber latex serum from pathogenic fungi tolerant and susceptible rubber tree (Hevea brasiliensis). Havanapan PO; Bourchookarn A; Ketterman AJ; Krittanai C J Proteomics; 2016 Jan; 131():82-92. PubMed ID: 26477389 [TBL] [Abstract][Full Text] [Related]
26. The susceptibility of sea-island cotton recombinant inbred lines to Fusarium oxysporum f. sp. vasinfectum infection is characterized by altered expression of long noncoding RNAs. Yao Z; Chen Q; Chen D; Zhan L; Zeng K; Gu A; Zhou J; Zhang Y; Zhu Y; Gao W; Wang L; Zhang Y; Qu Y Sci Rep; 2019 Feb; 9(1):2894. PubMed ID: 30814537 [TBL] [Abstract][Full Text] [Related]
27. Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Wei F; Luo S; Zheng Q; Qiu J; Yang W; Wu M; Xiao X Gene; 2015 Feb; 556(2):153-62. PubMed ID: 25431836 [TBL] [Abstract][Full Text] [Related]
28. HbLFG1, a Rubber Tree ( Li X; Li S; Liu Y; He Q; Liu W; Lin C; Miao W Phytopathology; 2021 Sep; 111(9):1648-1659. PubMed ID: 34047620 [TBL] [Abstract][Full Text] [Related]
29. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia). Feng S; Fang H; Liu X; Dong Y; Wang Q; Yang KQ BMC Genomics; 2021 Jan; 22(1):15. PubMed ID: 33407106 [TBL] [Abstract][Full Text] [Related]
30. Expression analysis of ROS producing and scavenging enzyme-encoding genes in rubber tree infected by Pseudocercospora ulei. Koop DM; Rio M; Sabau X; Almeida Cardoso SE; Cazevieille C; Leclercq J; Garcia D Plant Physiol Biochem; 2016 Jul; 104():188-99. PubMed ID: 27035258 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response. Gong XX; Yan BY; Hu J; Yang CP; Li YJ; Liu JP; Liao WB Genes Genomics; 2018 Nov; 40(11):1181-1197. PubMed ID: 30315521 [TBL] [Abstract][Full Text] [Related]
32. The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10. Ekchaweng K; Evangelisti E; Schornack S; Tian M; Churngchow N PLoS One; 2017; 12(5):e0175795. PubMed ID: 28459807 [TBL] [Abstract][Full Text] [Related]
33. South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Lieberei R Ann Bot; 2007 Dec; 100(6):1125-42. PubMed ID: 17650512 [TBL] [Abstract][Full Text] [Related]
34. Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches. Makita Y; Kawashima M; Lau NS; Othman AS; Matsui M BMC Genomics; 2018 Jan; 19(Suppl 1):922. PubMed ID: 29363422 [TBL] [Abstract][Full Text] [Related]
35. Comparison of Whole Plant and Detached Leaf Screening Techniques for Identifying Anthracnose Resistance in Strawberry Plants. Miller-Butler MA; Smith BJ; Babiker EM; Kreiser BR; Blythe EK Plant Dis; 2018 Nov; 102(11):2112-2119. PubMed ID: 30211658 [TBL] [Abstract][Full Text] [Related]
36. The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Gébelin V; Leclercq J; Kuswanhadi ; Argout X; Chaidamsari T; Hu S; Tang C; Sarah G; Yang M; Montoro P Tree Physiol; 2013 Oct; 33(10):1084-98. PubMed ID: 24218245 [TBL] [Abstract][Full Text] [Related]
37. Isolation of scopoletin from leaves of Hevea brasiliensis and the effect of scopoletin on pathogens of H. brasiliensis. Silva WP; Deraniyagala SA; Wijesundera RL; Karunanayake EH; Priyanka UM Mycopathologia; 2002; 153(4):199-202. PubMed ID: 12014480 [TBL] [Abstract][Full Text] [Related]
39. Dicer-like Proteins Regulate the Growth, Conidiation, and Pathogenicity of Wang Q; An B; Hou X; Guo Y; Luo H; He C Front Microbiol; 2017; 8():2621. PubMed ID: 29403443 [No Abstract] [Full Text] [Related]
40. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. Pinweha N; Asvarak T; Viboonjun U; Narangajavana J J Plant Physiol; 2015 Feb; 174():26-35. PubMed ID: 25462963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]