These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30988449)

  • 1. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam.
    Yang WD; Wang C; Fredin LA; Lin PA; Shimomoto L; Lezec HJ; Sharma R
    Nat Mater; 2019 Jun; 18(6):614-619. PubMed ID: 30988449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas.
    Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD
    Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending nanoscale patterning with multipolar surface plasmon resonances.
    Kherbouche I; MacRae D; Geronimi Jourdain T; Lagugné-Labarthet F; Lamouri A; Chevillot Biraud A; Mangeney C; Félidj N
    Nanoscale; 2021 Jul; 13(25):11051-11057. PubMed ID: 34080604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam.
    Chu MW; Myroshnychenko V; Chen CH; Deng JP; Mou CY; García de Abajo FJ
    Nano Lett; 2009 Jan; 9(1):399-404. PubMed ID: 19063614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations.
    de Albuquerque CDL; Zoltowski CM; Scarpitti BT; Shoup DN; Schultz ZD
    ACS Nanosci Au; 2021 Dec; 1(1):38-46. PubMed ID: 34966910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexacyano Ferrate (III) Reduction by Electron Transfer Induced by Plasmonic Catalysis on Gold Nanoparticles.
    Sarhid I; Lampre I; Dragoe D; Beaunier P; Palpant B; Remita H
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31533263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface-Induced Near-Infrared Response of Gold-Silica Hybrid Nanoparticles Antennas.
    Rahman AU; Geng J; Rehman SU; Iqbal MJ; Jin R
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence.
    Hofmann CE; Vesseur EJ; Sweatlock LA; Lezec HJ; García de Abajo FJ; Polman A; Atwater HA
    Nano Lett; 2007 Dec; 7(12):3612-7. PubMed ID: 17999547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.
    Peng T; Miao J; Gao Z; Zhang L; Gao Y; Fan C; Li D
    Small; 2018 Mar; 14(12):e1703510. PubMed ID: 29457350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothermic reaction at room temperature enabled by deep-ultraviolet plasmons.
    Wang C; Yang WD; Raciti D; Bruma A; Marx R; Agrawal A; Sharma R
    Nat Mater; 2021 Mar; 20(3):346-352. PubMed ID: 33139891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction.
    Liang W; Sun Y; Liang Z; Li D; Wang Y; Qin W; Jiang L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16753-16761. PubMed ID: 32119778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts.
    Quiroz J; Barbosa ECM; Araujo TP; Fiorio JL; Wang YC; Zou YC; Mou T; Alves TV; de Oliveira DC; Wang B; Haigh SJ; Rossi LM; Camargo PHC
    Nano Lett; 2018 Nov; 18(11):7289-7297. PubMed ID: 30352162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles.
    Vadai M; Angell DK; Hayee F; Sytwu K; Dionne JA
    Nat Commun; 2018 Nov; 9(1):4658. PubMed ID: 30405133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.