These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30988716)

  • 1. Identification of atherosclerosis-related prioritizing metabolites based on a multi-omics composite network.
    Cao JQ; Li CX; Wang RY; Chen JJ; Ma SM; Wang WY; Meng LJ
    Exp Ther Med; 2019 May; 17(5):3391-3398. PubMed ID: 30988716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate metabolites for postmenopausal osteoporosis using multi-omics composite network.
    Zhang C; Wang Y; Zhang CL; Wu HR
    Exp Ther Med; 2019 Apr; 17(4):3155-3161. PubMed ID: 30936988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Key Metabolites for Acute Lung Injury in Patients with Sepsis.
    Wang PQ; Li J; Zhang LL; Lv HC; Zhang SH
    Iran J Public Health; 2019 Jan; 48(1):77-84. PubMed ID: 30847314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined metabolic, phenomic and genomic data to prioritize atrial fibrillation-related metabolites.
    Yan ZT; Huang JM; Luo WL; Liu JW; Zhou K
    Exp Ther Med; 2019 May; 17(5):3929-3934. PubMed ID: 31007735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the Core Metabolites of Fanconi Anemia by Using a Multi-Omics Composite Network.
    Xie X; Chen X
    J Microbiol Biotechnol; 2022 Mar; 32(3):387-395. PubMed ID: 34954697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MultiNEP: a multi-omics network enhancement framework for prioritizing disease genes and metabolites simultaneously.
    Xu Z; Marchionni L; Wang S
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network.
    Yao Q; Xu Y; Yang H; Shang D; Zhang C; Zhang Y; Sun Z; Shi X; Feng L; Han J; Su F; Li C; Li X
    Sci Rep; 2015 Nov; 5():17201. PubMed ID: 26598063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing candidate diseases-related metabolites based on literature and functional similarity.
    Wang Y; Juan L; Peng J; Zang T; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):574. PubMed ID: 31760947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based prioritization of cancer genes by integrative ranks from multi-omics data.
    Shang H; Liu ZP
    Comput Biol Med; 2020 Apr; 119():103692. PubMed ID: 32339126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Cancer genes by combining two-rounds RWR based on multiple biological data.
    Zhang W; Lei Ieee Member X; Bian C
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):518. PubMed ID: 31760937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.
    Li J; Wang L; Guo M; Zhang R; Dai Q; Liu X; Wang C; Teng Z; Xuan P; Zhang M
    FEBS Open Bio; 2015; 5():251-6. PubMed ID: 25870785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient and Easy-to-Use Network-Based Integrative Method of Multi-Omics Data for Cancer Genes Discovery.
    Wei T; Fa B; Luo C; Johnston L; Zhang Y; Yu Z
    Front Genet; 2020; 11():613033. PubMed ID: 33488678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Novel Drugs and Diseases for Hepatocellular Carcinoma Based on Multi-Source Simulated Annealing Based Random Walk.
    Ibrahim SJA; Thangamani M
    J Med Syst; 2018 Sep; 42(10):188. PubMed ID: 30173379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying diseases-related metabolites using random walk.
    Hu Y; Zhao T; Zhang N; Zang T; Zhang J; Cheng L
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):116. PubMed ID: 29671398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Meta-Analysis Based Method for Prioritizing Candidate Genes Involved in a Pre-specific Function.
    Zhai J; Tang Y; Yuan H; Wang L; Shang H; Ma C
    Front Plant Sci; 2016; 7():1914. PubMed ID: 28018423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Discovery of Characteristic Metabolic Pathways in the Tea Plant (
    Zhang S; Zhang L; Tai Y; Wang X; Ho CT; Wan X
    Front Plant Sci; 2018; 9():480. PubMed ID: 29915604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization.
    Shim JE; Hwang S; Lee I
    PLoS One; 2015; 10(6):e0130589. PubMed ID: 26091506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.