These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30988900)

  • 21. Modelling size structured food webs using a modified niche model with two predator traits.
    Klecka J
    PLoS One; 2014; 9(8):e99355. PubMed ID: 25119999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does the evolution of ontogenetic niche shifts favour species coexistence? An empirical test in Trinidadian streams.
    Anaya-Rojas JM; Bassar RD; Matthews B; Goldberg JF; King L; Reznick D; Travis J
    J Anim Ecol; 2023 Aug; 92(8):1601-1612. PubMed ID: 36916855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition.
    Potapov AM; Tiunov AV; Scheu S
    Biol Rev Camb Philos Soc; 2019 Feb; 94(1):37-59. PubMed ID: 29920907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence of complexity in evolving niche-model food webs.
    Guill C; Drossel B
    J Theor Biol; 2008 Mar; 251(1):108-20. PubMed ID: 18164730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs.
    Havermans C; Auel H; Hagen W; Held C; Ensor NS; A Tarling G
    Adv Mar Biol; 2019; 82():51-92. PubMed ID: 31229150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intraguild predation enhances biodiversity and functioning in complex food webs.
    Wang S; Brose U; Gravel D
    Ecology; 2019 Mar; 100(3):e02616. PubMed ID: 30636279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Body size dependent dispersal influences stability in heterogeneous metacommunities.
    Anderson KE; Fahimipour AK
    Sci Rep; 2021 Aug; 11(1):17410. PubMed ID: 34465802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactive effects of body-size structure and adaptive foraging on food-web stability.
    Heckmann L; Drossel B; Brose U; Guill C
    Ecol Lett; 2012 Mar; 15(3):243-50. PubMed ID: 22276597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Food web complexity weakens size-based constraints on the pyramids of life.
    Woodson CB; Schramski JR; Joye SB
    Proc Biol Sci; 2020 Sep; 287(1934):20201500. PubMed ID: 32900320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Food web interactions in a human dominated Mediterranean coastal ecosystem.
    Papantoniou G; Giannoulaki M; Stoumboudi MT; Lefkaditou E; Tsagarakis K
    Mar Environ Res; 2021 Dec; 172():105507. PubMed ID: 34742025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.
    Rudolf VH; Rasmussen NL
    Ecology; 2013 May; 94(5):1046-56. PubMed ID: 23858645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter-individual differences in ontogenetic trophic shifts among three marine predators.
    Matich P; Kiszka JJ; Heithaus MR; Le Bourg B; Mourier J
    Oecologia; 2019 Mar; 189(3):621-636. PubMed ID: 30796523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Species richness and trophic diversity increase decomposition in a co-evolved food web.
    Baiser B; Ardeshiri RS; Ellison AM
    PLoS One; 2011; 6(5):e20672. PubMed ID: 21673992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parasites in food webs: the ultimate missing links.
    Lafferty KD; Allesina S; Arim M; Briggs CJ; De Leo G; Dobson AP; Dunne JA; Johnson PT; Kuris AM; Marcogliese DJ; Martinez ND; Memmott J; Marquet PA; McLaughlin JP; Mordecai EA; Pascual M; Poulin R; Thieltges DW
    Ecol Lett; 2008 Jun; 11(6):533-46. PubMed ID: 18462196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures.
    Yen JD; Cabral RB; Cantor M; Hatton I; Kortsch S; Patrício J; Yamamichi M
    J Anim Ecol; 2016 Mar; 85(2):537-47. PubMed ID: 26749320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models.
    Sánchez-Hernández J; Nunn AD; Adams CE; Amundsen PA
    Biol Rev Camb Philos Soc; 2019 Apr; 94(2):539-554. PubMed ID: 30251433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How does abundance scale with body size in coupled size-structured food webs?
    Blanchard JL; Jennings S; Law R; Castle MD; McCloghrie P; Rochet MJ; Benoît E
    J Anim Ecol; 2009 Jan; 78(1):270-80. PubMed ID: 19120607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecosystem function in predator-prey food webs-confronting dynamic models with empirical data.
    Curtsdotter A; Banks HT; Banks JE; Jonsson M; Jonsson T; Laubmeier AN; Traugott M; Bommarco R
    J Anim Ecol; 2019 Feb; 88(2):196-210. PubMed ID: 30079547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.