BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 30989108)

  • 1. VPS4 triggers constriction and cleavage of ESCRT-III helical filaments.
    Maity S; Caillat C; Miguet N; Sulbaran G; Effantin G; Schoehn G; Roos WH; Weissenhorn W
    Sci Adv; 2019 Apr; 5(4):eaau7198. PubMed ID: 30989108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 α7 and α9 to stimulate ATP hydrolysis.
    Davies BA; Norgan AP; Payne JA; Schulz ME; Nichols MD; Tan JA; Xu Z; Katzmann DJ
    J Biol Chem; 2014 Oct; 289(41):28707-18. PubMed ID: 25164817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage.
    Azad K; Guilligay D; Boscheron C; Maity S; De Franceschi N; Sulbaran G; Effantin G; Wang H; Kleman JP; Bassereau P; Schoehn G; Roos WH; Desfosses A; Weissenhorn W
    Nat Struct Mol Biol; 2023 Jan; 30(1):81-90. PubMed ID: 36604498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of VPS4 in ESCRT-III polymer remodeling.
    Caillat C; Maity S; Miguet N; Roos WH; Weissenhorn W
    Biochem Soc Trans; 2019 Feb; 47(1):441-448. PubMed ID: 30783012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding.
    Effantin G; Dordor A; Sandrin V; Martinelli N; Sundquist WI; Schoehn G; Weissenhorn W
    Cell Microbiol; 2013 Feb; 15(2):213-26. PubMed ID: 23051622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4.
    Han H; Hill CP
    Biochem Soc Trans; 2019 Feb; 47(1):37-45. PubMed ID: 30647138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis.
    Lee S; Chang J; Renvoisé B; Tipirneni A; Yang S; Blackstone C
    Mol Biol Cell; 2012 Nov; 23(22):4347-61. PubMed ID: 23015756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helical structures of ESCRT-III are disassembled by VPS4.
    Lata S; Schoehn G; Jain A; Pires R; Piehler J; Gottlinger HG; Weissenhorn W
    Science; 2008 Sep; 321(5894):1354-7. PubMed ID: 18687924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition.
    Merrill SA; Hanson PI
    J Biol Chem; 2010 Nov; 285(46):35428-38. PubMed ID: 20805225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis.
    Mierzwa BE; Chiaruttini N; Redondo-Morata L; von Filseck JM; König J; Larios J; Poser I; Müller-Reichert T; Scheuring S; Roux A; Gerlich DW
    Nat Cell Biol; 2017 Jul; 19(7):787-798. PubMed ID: 28604678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase.
    Monroe N; Han H; Shen PS; Sundquist WI; Hill CP
    Elife; 2017 Apr; 6():. PubMed ID: 28379137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of the human LIP5 regulatory protein with endosomal sorting complexes required for transport.
    Skalicky JJ; Arii J; Wenzel DM; Stubblefield WM; Katsuyama A; Uter NT; Bajorek M; Myszka DG; Sundquist WI
    J Biol Chem; 2012 Dec; 287(52):43910-26. PubMed ID: 23105106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation.
    Bertin A; de Franceschi N; de la Mora E; Maity S; Alqabandi M; Miguet N; di Cicco A; Roos WH; Mangenot S; Weissenhorn W; Bassereau P
    Nat Commun; 2020 May; 11(1):2663. PubMed ID: 32471988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of Substrates to the Central Pore of the Vps4 ATPase Is Autoinhibited by the Microtubule Interacting and Trafficking (MIT) Domain and Activated by MIT Interacting Motifs (MIMs).
    Han H; Monroe N; Votteler J; Shakya B; Sundquist WI; Hill CP
    J Biol Chem; 2015 May; 290(21):13490-9. PubMed ID: 25833946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly.
    Davies BA; Azmi IF; Payne J; Shestakova A; Horazdovsky BF; Babst M; Katzmann DJ
    Mol Biol Cell; 2010 Oct; 21(19):3396-408. PubMed ID: 20702581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling.
    Elia N; Fabrikant G; Kozlov MM; Lippincott-Schwartz J
    Biophys J; 2012 May; 102(10):2309-20. PubMed ID: 22677384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESCRT-III polymers in membrane neck constriction.
    Guizetti J; Gerlich DW
    Trends Cell Biol; 2012 Mar; 22(3):133-40. PubMed ID: 22240455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane.
    Bodon G; Chassefeyre R; Pernet-Gallay K; Martinelli N; Effantin G; Hulsik DL; Belly A; Goldberg Y; Chatellard-Causse C; Blot B; Schoehn G; Weissenhorn W; Sadoul R
    J Biol Chem; 2011 Nov; 286(46):40276-86. PubMed ID: 21926173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the membrane deformation AAA ATPase Vps4.
    Hill CP; Babst M
    Biochim Biophys Acta; 2012 Jan; 1823(1):172-81. PubMed ID: 21925211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes.
    McCullough J; Frost A; Sundquist WI
    Annu Rev Cell Dev Biol; 2018 Oct; 34():85-109. PubMed ID: 30095293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.