BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30989194)

  • 21. Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor.
    Fukuoka H; Yakushi T; Kusumoto A; Homma M
    J Mol Biol; 2005 Aug; 351(4):707-17. PubMed ID: 16038931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function and Structure of FlaK, a Master Regulator of the Polar Flagellar Genes in Marine
    Homma M; Kobayakawa T; Hao Y; Nishikino T; Kojima S
    J Bacteriol; 2022 Nov; 204(11):e0032022. PubMed ID: 36314831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein.
    Green JC; Kahramanoglou C; Rahman A; Pender AM; Charbonnel N; Fraser GM
    J Mol Biol; 2009 Aug; 391(4):679-90. PubMed ID: 19497327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the Sodium-Driven Flagellar Motor in Marine Vibrio.
    Onoue Y; Homma M
    Methods Mol Biol; 2017; 1593():253-258. PubMed ID: 28389960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.
    Kojima M; Kubo R; Yakushi T; Homma M; Kawagishi I
    Mol Microbiol; 2007 Apr; 64(1):57-67. PubMed ID: 17376072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure analysis of the periplasmic region of bacterial flagellar motor stators by small angle X-ray scattering.
    Liew CW; Hynson RM; Ganuelas LA; Shah-Mohammadi N; Duff AP; Kojima S; Homma M; Lee LK
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1614-1619. PubMed ID: 29197577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of linker region flanked by transmembrane and peptidoglycan binding region of PomB in energy conversion of the Vibrio flagellar motor.
    Miyamura Y; Nishikino T; Koiwa H; Homma M; Kojima S
    Genes Cells; 2024 Apr; 29(4):282-289. PubMed ID: 38351850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the MinD/ParA-type ATPase FlhG in Vibrio alginolyticus and implications for function of its monomeric form.
    Kojima S; Imura Y; Hirata H; Homma M
    Genes Cells; 2020 Apr; 25(4):279-287. PubMed ID: 32012412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a luxO-regulated extracellular protein Pep and its roles in motility in Vibrio alginolyticus.
    Cao X; Wang Q; Liu Q; Rui H; Liu H; Zhang Y
    Microb Pathog; 2011 Feb; 50(2):123-31. PubMed ID: 21167274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sodium-driven motor of the polar flagellum in marine bacteria Vibrio.
    Li N; Kojima S; Homma M
    Genes Cells; 2011 Oct; 16(10):985-99. PubMed ID: 21895888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational analysis and overproduction effects of MotX, an essential component for motor function of Na+-driven polar flagella of Vibrio.
    Takekawa N; Kojima S; Homma M
    J Biochem; 2017 Feb; 161(2):159-166. PubMed ID: 28173168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence imaging of GFP-fused periplasmic components of Na+-driven flagellar motor using Tat pathway in Vibrio alginolyticus.
    Takekawa N; Kojima S; Homma M
    J Biochem; 2013 Jun; 153(6):547-53. PubMed ID: 23457404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella.
    Zhuang XY; Guo S; Li Z; Zhao Z; Kojima S; Homma M; Wang P; Lo CJ; Bai F
    Mol Microbiol; 2020 Aug; 114(2):279-291. PubMed ID: 32259388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus.
    Kusumoto A; Kamisaka K; Yakushi T; Terashima H; Shinohara A; Homma M
    J Biochem; 2006 Jan; 139(1):113-21. PubMed ID: 16428326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletion analysis of the carboxyl-terminal region of the PomB component of the vibrio alginolyticus polar flagellar motor.
    Yakushi T; Hattori N; Homma M
    J Bacteriol; 2005 Jan; 187(2):778-84. PubMed ID: 15629950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation.
    Onoue Y; Kojima S; Homma M
    J Biochem; 2015 Dec; 158(6):523-9. PubMed ID: 26142283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of PlzD, a YcgR homologue of c-di-GMP-binding protein, on polar flagellar motility in Vibrio alginolyticus.
    Kojima S; Yoneda T; Morimoto W; Homma M
    J Biochem; 2019 Jul; 166(1):77-88. PubMed ID: 30778544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Studies on the mechanism of bacterial flagellar rotation and the flagellar number regulation].
    Kojima S
    Nihon Saikingaku Zasshi; 2016; 71(3):185-97. PubMed ID: 27581279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.
    Fukuoka H; Wada T; Kojima S; Ishijima A; Homma M
    Mol Microbiol; 2009 Feb; 71(4):825-35. PubMed ID: 19183284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus.
    Kusumoto A; Shinohara A; Terashima H; Kojima S; Yakushi T; Homma M
    Microbiology (Reading); 2008 May; 154(Pt 5):1390-1399. PubMed ID: 18451048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.