BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30989251)

  • 1. Purification-independent immunoreagents obtained by displaying nanobodies on bacteria surface.
    Oloketuyi S; Dilkaute C; Mazzega E; Jose J; de Marco A
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4443-4453. PubMed ID: 30989251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.
    Wendel S; Fischer EC; Martínez V; Seppälä S; Nørholm MH
    Microb Cell Fact; 2016 May; 15():71. PubMed ID: 27142225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant expression of nanobodies and nanobody-derived immunoreagents.
    de Marco A
    Protein Expr Purif; 2020 Aug; 172():105645. PubMed ID: 32289357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli surface display for the selection of nanobodies.
    Salema V; Fernández LÁ
    Microb Biotechnol; 2017 Nov; 10(6):1468-1484. PubMed ID: 28772027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display.
    Salema V; Mañas C; Cerdán L; Piñero-Lambea C; Marín E; Roovers RC; Van Bergen En Henegouwen PM; Fernández LÁ
    MAbs; 2016 Oct; 8(7):1286-1301. PubMed ID: 27472381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobody production can be simplified by direct secretion from Escherichia coli.
    Iwaki T; Hara K; Umemura K
    Protein Expr Purif; 2020 Jun; 170():105607. PubMed ID: 32062022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface display of a single-domain antibody library on Gram-positive bacteria.
    Fleetwood F; Devoogdt N; Pellis M; Wernery U; Muyldermans S; Ståhl S; Löfblom J
    Cell Mol Life Sci; 2013 Mar; 70(6):1081-93. PubMed ID: 23064703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Silico Investigation of Signal Peptide Sequences to Enhance Secretion of CD44 Nanobodies Expressed in Escherichia coli.
    Kavousipour S; Mohammadi S; Eftekhar E; Barazesh M; Morowvat MH
    Curr Pharm Biotechnol; 2021; 22(9):1192-1205. PubMed ID: 33045964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of nanobodies binding human fibrinogen selected by E. coli display.
    Salema V; López-Guajardo A; Gutierrez C; Mencía M; Fernández LÁ
    J Biotechnol; 2016 Sep; 234():58-65. PubMed ID: 27485813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis.
    Weng D; Yang L; Xie Y
    Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies.
    Tang JC; Drokhlyansky E; Etemad B; Rudolph S; Guo B; Wang S; Ellis EG; Li JZ; Cepko CL
    Elife; 2016 May; 5():. PubMed ID: 27205882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of nanobodies against urease activity ofHelicobacter pylori in Pichia pastoris.
    Pourasadi S; Mousavi Gargari SL; Rajabibazl M; Nazarian S
    Turk J Med Sci; 2017 Apr; 47(2):695-701. PubMed ID: 28425268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of mWasabi fluorescent protein-binding nanobodies.
    Li S; Shan H; Wang T; Zheng X; Shi M; Chen B; Lu H; Zhang Y; Zhao S; Hua Z
    Anal Biochem; 2020 Nov; 608():113875. PubMed ID: 32739350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Selection of Single-Domain Antibody (VHH) Using cDNA Display.
    Nemoto N; Kumachi S; Arai H
    Methods Mol Biol; 2018; 1827():269-285. PubMed ID: 30196502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant λ bacteriophage displaying nanobody towards third domain of HER-2 epitope inhibits proliferation of breast carcinoma SKBR-3 cell line.
    Shoae-Hassani A; Mortazavi-Tabatabaei SA; Sharif S; Madadi S; Rezaei-Khaligh H; Verdi J
    Arch Immunol Ther Exp (Warsz); 2013 Feb; 61(1):75-83. PubMed ID: 23224340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies.
    Romao E; Morales-Yanez F; Hu Y; Crauwels M; De Pauw P; Hassanzadeh GG; Devoogdt N; Ackaert C; Vincke C; Muyldermans S
    Curr Pharm Des; 2016; 22(43):6500-6518. PubMed ID: 27669966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.
    Han MJ; Lee SH
    FEMS Microbiol Lett; 2015 Jan; 362(1):1-7. PubMed ID: 25790485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-Specific Radioactive Labeling of Nanobodies.
    Crauwels M; Massa S; Martin C; Betti C; Ballet S; Devoogdt N; Xavier C; Muyldermans S
    Methods Mol Biol; 2018; 1827():505-540. PubMed ID: 30196514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of single-domain antibodies in bacterial systems.
    Baral TN; Arbabi-Ghahroudi M
    Methods Mol Biol; 2012; 911():257-75. PubMed ID: 22886257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid and simple pipeline for synthesis of mRNA-ribosome-V(H)H complexes used in single-domain antibody ribosome display.
    Bencurova E; Pulzova L; Flachbartova Z; Bhide M
    Mol Biosyst; 2015 Jun; 11(6):1515-24. PubMed ID: 25902394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.