These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30990185)

  • 21. Design and evaluation of a low-cost instrumented glove for hand function assessment.
    Oess NP; Wanek J; Curt A
    J Neuroeng Rehabil; 2012 Jan; 9():2. PubMed ID: 22248160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transient impact of prolonged versus repetitive stretch on hand motor control in chronic stroke.
    Triandafilou KM; Ochoa J; Kang X; Fischer HC; Stoykov ME; Kamper DG
    Top Stroke Rehabil; 2011; 18(4):316-24. PubMed ID: 21914596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of Wearable Hand Rehabilitation Glove With Bionic Fiber-Reinforced Actuator.
    Han Y; Xu Q; Wu F
    IEEE J Transl Eng Health Med; 2022; 10():2100610. PubMed ID: 35992370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myoelectric untethered robotic glove enhances hand function and performance on daily living tasks after stroke.
    Yurkewich A; Kozak IJ; Ivanovic A; Rossos D; Wang RH; Hebert D; Mihailidis A
    J Rehabil Assist Technol Eng; 2020; 7():2055668320964050. PubMed ID: 33403121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carryover effects of cyclical stretching of the digits on hand function in stroke survivors.
    Triandafilou KM; Kamper DG
    Arch Phys Med Rehabil; 2014 Aug; 95(8):1571-6. PubMed ID: 24794423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke.
    Colomer C; Llorens R; Noé E; Alcañiz M
    J Neuroeng Rehabil; 2016 May; 13(1):45. PubMed ID: 27169462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
    Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exo-Glove Poly II: A Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven Actuation System.
    Kang BB; Choi H; Lee H; Cho KJ
    Soft Robot; 2019 Apr; 6(2):214-227. PubMed ID: 30566026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of a wearable soft-robotic glove on motor function and functional performance of older adults.
    Radder B; Prange-Lasonder GB; Kottink AIR; Holmberg J; Sletta K; Van Dijk M; Meyer T; Buurke JH; Rietman JS
    Assist Technol; 2020; 32(1):9-15. PubMed ID: 29601251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Therapy effect on hand function after home use of a wearable assistive soft-robotic glove supporting grip strength.
    Kottink AIR; Nikamp CDM; Bos FP; Sluis CKV; Broek MVD; Onneweer B; Stolwijk-Swüste JM; Brink SM; Voet NBM; Rietman JS; Prange-Lasonder GB
    PLoS One; 2024; 19(7):e0306713. PubMed ID: 38990858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wearable vibrotactile stimulation for upper extremity rehabilitation in chronic stroke: clinical feasibility trial using the VTS Glove.
    Seim CE; Wolf SL; Starner TE
    J Neuroeng Rehabil; 2021 Jan; 18(1):14. PubMed ID: 33485371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of an electromyographically driven hand orthosis for training after stroke.
    Ochoa JM; Listenberger M; Kamper DG; Lee SW
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975382. PubMed ID: 22275586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hand motion analysis during robot-aided rehabilitation in chronic stroke.
    Cordella F; Scotto Di Luzio F; Bravi M; Santacaterina F; Bressi F; Zollo L
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):45-52. Technology in Medicine. PubMed ID: 33386033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients.
    Hsu HY; Lin CF; Su FC; Kuo HT; Chiu HY; Kuo LC
    J Neuroeng Rehabil; 2012 May; 9():26. PubMed ID: 22571177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation.
    Brokaw EB; Black I; Holley RJ; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):391-9. PubMed ID: 21622079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke.
    Norman SL; McFarland DJ; Miner A; Cramer SC; Wolbrecht ET; Wolpaw JR; Reinkensmeyer DJ
    J Neural Eng; 2018 Oct; 15(5):056026. PubMed ID: 30063219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.