These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 30990191)
1. RNA-Protein Binding Sites Prediction via Multi Scale Convolutional Gated Recurrent Unit Networks. Shen Z; Deng SP; Huang DS IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1741-1750. PubMed ID: 30990191 [TBL] [Abstract][Full Text] [Related]
2. Capsule Network for Predicting RNA-Protein Binding Preferences Using Hybrid Feature. Shen Z; Deng SP; Huang DS IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1483-1492. PubMed ID: 31562101 [TBL] [Abstract][Full Text] [Related]
3. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. Pan X; Rijnbeek P; Yan J; Shen HB BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003 [TBL] [Abstract][Full Text] [Related]
4. MAHyNet: Parallel Hybrid Network for RNA-Protein Binding Sites Prediction Based on Multi-Head Attention and Expectation Pooling. Wang W; Sun Z; Liu D; Zhang H; Li J; Wang X; Zhou Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):416-427. PubMed ID: 38363672 [TBL] [Abstract][Full Text] [Related]
9. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence. Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548 [TBL] [Abstract][Full Text] [Related]
10. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction. Su Y; Luo Y; Zhao X; Liu Y; Peng J PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777 [TBL] [Abstract][Full Text] [Related]
11. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. Pan X; Shen HB BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811 [TBL] [Abstract][Full Text] [Related]
12. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network. Liu L; Wei Y; Tan Z; Zhang Q; Sun J; Zhao Q Interdiscip Sci; 2024 Sep; 16(3):635-648. PubMed ID: 38381315 [TBL] [Abstract][Full Text] [Related]
13. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks. Guo Y; Wang B; Li W; Yang B J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785 [TBL] [Abstract][Full Text] [Related]
15. DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites. Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M BMC Bioinformatics; 2022 Jun; 23(1):257. PubMed ID: 35768792 [TBL] [Abstract][Full Text] [Related]
16. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure. Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313 [TBL] [Abstract][Full Text] [Related]
17. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model. Wang Z; Dai Q; Song J; Duan X; Yang H; Yang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2409-2419. PubMed ID: 34038367 [TBL] [Abstract][Full Text] [Related]
18. econvRBP: Improved ensemble convolutional neural networks for RNA binding protein prediction directly from sequence. Zhao Y; Du X Methods; 2020 Oct; 181-182():15-23. PubMed ID: 31513916 [TBL] [Abstract][Full Text] [Related]
19. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network. Zhang SW; Wang Y; Zhang XX; Wang JQ Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206 [TBL] [Abstract][Full Text] [Related]
20. Multi-resBind: a residual network-based multi-label classifier for in vivo RNA binding prediction and preference visualization. Zhao S; Hamada M BMC Bioinformatics; 2021 Nov; 22(1):554. PubMed ID: 34781902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]