These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 30990220)
1. The role of structural anisotropy in the magnetooptical response of an organoferrogel with mobile magnetic nanoparticles. Nádasi H; Corradi Á; Stannarius R; Koch K; Schmidt AM; Aya S; Araoka F; Eremin A Soft Matter; 2019 May; 15(18):3788-3795. PubMed ID: 30990220 [TBL] [Abstract][Full Text] [Related]
3. Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection. Buznikov NA; Safronov AP; Orue I; Golubeva EV; Lepalovskij VN; Svalov AV; Chlenova AA; Kurlyandskaya GV Biosens Bioelectron; 2018 Oct; 117():366-372. PubMed ID: 29960268 [TBL] [Abstract][Full Text] [Related]
4. Magnetic properties of isotropic and anisotropic CoFe2O4-based ferrogels and their application as torsional and rotational actuators. Monz S; Tschöpe A; Birringer R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021404. PubMed ID: 18850833 [TBL] [Abstract][Full Text] [Related]
6. Facile method for preparation of anisotropic submicron magnetic Janus particles using miniemulsion. Kaewsaneha C; Tangboriboonrat P; Polpanich D; Eissa M; Elaissari A J Colloid Interface Sci; 2013 Nov; 409():66-71. PubMed ID: 23993786 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields. Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070 [TBL] [Abstract][Full Text] [Related]
8. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications. Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092 [TBL] [Abstract][Full Text] [Related]
9. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties. Mandel K; Granath T; Wehner T; Rey M; Stracke W; Vogel N; Sextl G; Müller-Buschbaum K ACS Nano; 2017 Jan; 11(1):779-787. PubMed ID: 27943671 [TBL] [Abstract][Full Text] [Related]
10. Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Ma Z; Mohapatra J; Wei K; Liu JP; Sun S Chem Rev; 2023 Apr; 123(7):3904-3943. PubMed ID: 34968046 [TBL] [Abstract][Full Text] [Related]
11. Periodic Grating-like Patterns Induced by Self-Assembly of Gelator Fibres in Nematic Gels. Topnani NB; Prutha N; Pratibha R Chemphyschem; 2018 Jun; 19(12):1471-1475. PubMed ID: 29542850 [TBL] [Abstract][Full Text] [Related]
12. Field induced anisotropic cooperativity in a magnetic colloidal glass. Wandersman E; Chushkin Y; Dubois E; Dupuis V; Robert A; Perzynski R Soft Matter; 2015 Sep; 11(36):7165-70. PubMed ID: 26255958 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic magnetic nanoparticles for biomedicine: bridging frequency separated AC-field controlled domains of actuation. Serantes D; Chantrell R; Gavilán H; Morales MDP; Chubykalo-Fesenko O; Baldomir D; Satoh A Phys Chem Chem Phys; 2018 Dec; 20(48):30445-30454. PubMed ID: 30506075 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic structure of calcium-induced alginate gels by optical and small-angle X-ray scattering measurements. Maki Y; Ito K; Hosoya N; Yoneyama C; Furusawa K; Yamamoto T; Dobashi T; Sugimoto Y; Wakabayashi K Biomacromolecules; 2011 Jun; 12(6):2145-52. PubMed ID: 21504159 [TBL] [Abstract][Full Text] [Related]
15. Magnetically enhanced bicelles delivering switchable anisotropy in optical gels. Liebi M; Kuster S; Kohlbrecher J; Ishikawa T; Fischer P; Walde P; Windhab EJ ACS Appl Mater Interfaces; 2014 Jan; 6(2):1100-5. PubMed ID: 24369041 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of iron oxide nanoparticles in Listeria innocua Dps (DNA-binding protein from starved cells): a study with the wild-type protein and a catalytic centre mutant. Ceci P; Chiancone E; Kasyutich O; Bellapadrona G; Castelli L; Fittipaldi M; Gatteschi D; Innocenti C; Sangregorio C Chemistry; 2010 Jan; 16(2):709-17. PubMed ID: 19859920 [TBL] [Abstract][Full Text] [Related]
17. An anisotropy of orientation-tuned suppression that matches the anisotropy of typical natural scenes. Essock EA; Haun AM; Kim YJ J Vis; 2009 Jan; 9(1):35.1-15. PubMed ID: 19271905 [TBL] [Abstract][Full Text] [Related]
18. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Ge Y; Zhang Y; Xia J; Ma M; He S; Nie F; Gu N Colloids Surf B Biointerfaces; 2009 Oct; 73(2):294-301. PubMed ID: 19564099 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature. Mietta JL; Ruiz MM; Antonel PS; Perez OE; Butera A; Jorge G; Negri RM Langmuir; 2012 May; 28(17):6985-96. PubMed ID: 22475548 [TBL] [Abstract][Full Text] [Related]
20. Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin-Landau-Verwey-Overbeek consideration, interfacial interactions and magnetodeformation. Shankar A; Safronov AP; Mikhnevich EA; Beketov IV; Kurlyandskaya GV Soft Matter; 2017 May; 13(18):3359-3372. PubMed ID: 28426089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]