BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30990327)

  • 21. Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources.
    Li T; Du P; Xu N
    PLoS One; 2010 Nov; 5(11):e15411. PubMed ID: 21085571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Direct Kinase Substrates via Kinase Assay-Linked Phosphoproteomics.
    Xue L; Arrington JV; Tao WA
    Methods Mol Biol; 2016; 1355():263-73. PubMed ID: 26584932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RegPhos: a system to explore the protein kinase-substrate phosphorylation network in humans.
    Lee TY; Bo-Kai Hsu J; Chang WC; Huang HD
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D777-87. PubMed ID: 21037261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of kinase-specific phosphorylation sites using conditional random fields.
    Dang TH; Van Leemput K; Verschoren A; Laukens K
    Bioinformatics; 2008 Dec; 24(24):2857-64. PubMed ID: 18940828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions.
    Xue B; Jordan B; Rizvi S; Naegle KM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008681. PubMed ID: 33556051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L; Yan H; Zhang XF
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. KSP: an integrated method for predicting catalyzing kinases of phosphorylation sites in proteins.
    Ma H; Li G; Su Z
    BMC Genomics; 2020 Aug; 21(1):537. PubMed ID: 32753030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Protein-Protein Interaction via co-occurring Aligned Pattern Clusters.
    Sze-To A; Fung S; Lee EA; Wong AKC
    Methods; 2016 Nov; 110():26-34. PubMed ID: 27476008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors.
    Jenardhanan P; Panneerselvam M; Mathur PP
    Curr Top Med Chem; 2019; 19(6):467-485. PubMed ID: 31184298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for the identification of kinase substrates using analog-sensitive kinases.
    Koch A; Hauf S
    Eur J Cell Biol; 2010; 89(2-3):184-93. PubMed ID: 20061049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation analysis.
    Ayati M; Wiredja D; Schlatzer D; Maxwell S; Li M; Koyutürk M; Chance MR
    PLoS Comput Biol; 2019 Feb; 15(2):e1006678. PubMed ID: 30811403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying Spurious Interactions in the Protein-Protein Interaction Networks Using Local Similarity Preserving Embedding.
    Zhu L; Deng SP; You ZH; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):345-352. PubMed ID: 28368812
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating network topology, gene expression data and GO annotation information for protein complex prediction.
    Zhang W; Xu J; Li Y; Zou X
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950001. PubMed ID: 30803297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B; Fan W; Liu J; Wu FX
    Brief Bioinform; 2014 Mar; 15(2):177-94. PubMed ID: 23780996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A grammar inference approach for predicting kinase specific phosphorylation sites.
    Datta S; Mukhopadhyay S
    PLoS One; 2015; 10(4):e0122294. PubMed ID: 25886273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A New Method for Predicting Protein Functions From Dynamic Weighted Interactome Networks.
    Zhao B; Wang J; Li M; Li X; Li Y; Wu FX; Pan Y
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):131-9. PubMed ID: 26955047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new two-stage method for revealing missing parts of edges in protein-protein interaction networks.
    Zhang W; Xu J; Li Y; Zou X
    PLoS One; 2017; 12(5):e0177029. PubMed ID: 28493910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.