These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30990327)

  • 41. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.
    Jeong H; Qian X; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):395. PubMed ID: 27766938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X; Wang J; Zhao B; Wu FX; Pan Y
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation analysis.
    Ayati M; Wiredja D; Schlatzer D; Maxwell S; Li M; Koyutürk M; Chance MR
    PLoS Comput Biol; 2019 Feb; 15(2):e1006678. PubMed ID: 30811403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational prediction of eukaryotic phosphorylation sites.
    Trost B; Kusalik A
    Bioinformatics; 2011 Nov; 27(21):2927-35. PubMed ID: 21926126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of Protein Phosphorylation and Its Functional Impact on Protein-Protein Interactions via Text Mining of the Scientific Literature.
    Wang Q; Ross KE; Huang H; Ren J; Li G; Vijay-Shanker K; Wu CH; Arighi CN
    Methods Mol Biol; 2017; 1558():213-232. PubMed ID: 28150240
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.
    Fang Y; Sun M; Dai G; Ramain K
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):76-85. PubMed ID: 26886733
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting essential proteins based on subcellular localization, orthology and PPI networks.
    Li G; Li M; Wang J; Wu J; Wu FX; Pan Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):279. PubMed ID: 27586883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The protein-protein interaction network of the human Sirtuin family.
    Sharma A; Costantini S; Colonna G
    Biochim Biophys Acta; 2013 Oct; 1834(10):1998-2009. PubMed ID: 23811471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From sequence to structural analysis in protein phosphorylation motifs.
    Via A; Diella F; Gibson TJ; Helmer-Citterich M
    Front Biosci (Landmark Ed); 2011 Jan; 16(4):1261-75. PubMed ID: 21196230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.
    Mehranfar A; Ghadiri N; Kouhsar M; Golshani A
    Comput Biol Med; 2017 Sep; 88():18-31. PubMed ID: 28672176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An integrative C. elegans protein-protein interaction network with reliability assessment based on a probabilistic graphical model.
    Huang XT; Zhu Y; Chan LL; Zhao Z; Yan H
    Mol Biosyst; 2016 Jan; 12(1):85-92. PubMed ID: 26555698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BalanceAli: Multiple PPI Network Alignment With Balanced High Coverage and Consistency.
    Gao J; Song B; Ke W; Hu X
    IEEE Trans Nanobioscience; 2017 Jul; 16(5):333-340. PubMed ID: 28541215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A summary of computational resources for protein phosphorylation.
    Xue Y; Gao X; Cao J; Liu Z; Jin C; Wen L; Yao X; Ren J
    Curr Protein Pept Sci; 2010 Sep; 11(6):485-96. PubMed ID: 20491621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks.
    Wang J; Zheng W; Qian Y; Liang J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29292776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting protein functions by using unbalanced bi-random walk algorithm on protein-protein interaction network and functional interrelationship network.
    Peng W; Wang J; Chen L; Zhong J; Zhang Z; Pan Y
    Curr Protein Pept Sci; 2014; 15(6):529-39. PubMed ID: 25059324
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SiPAN: simultaneous prediction and alignment of protein-protein interaction networks.
    Alkan F; Erten C
    Bioinformatics; 2015 Jul; 31(14):2356-63. PubMed ID: 25788620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.