These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30990404)

  • 1. Distinct replication and gene expression strategies of the Rice Stripe virus in vector insects and host plants.
    Zhao W; Wang Q; Xu Z; Liu R; Cui F
    J Gen Virol; 2019 May; 100(5):877-888. PubMed ID: 30990404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus.
    Yang M; Xu Z; Zhao W; Liu Q; Li Q; Lu L; Liu R; Zhang X; Cui F
    BMC Plant Biol; 2018 Oct; 18(1):219. PubMed ID: 30286719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR.
    Li S; Li X; Sun L; Zhou Y
    Acta Virol; 2012; 56(1):75-9. PubMed ID: 22404613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein L18 is an essential factor that promote rice stripe virus accumulation in small brown planthopper.
    Li S; Li X; Zhou Y
    Virus Res; 2018 Mar; 247():15-20. PubMed ID: 29374519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune responses induced by different genotypes of the disease-specific protein of Rice stripe virus in the vector insect.
    Zhao W; Wang Q; Xu Z; Liu R; Cui F
    Virology; 2019 Jan; 527():122-131. PubMed ID: 30500711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Rice stripe virus transmission efficiency by quantification of viral load in the saliva of insect vector.
    Li J; Zhao W; Wang W; Zhang L; Cui F
    Pest Manag Sci; 2019 Jul; 75(7):1979-1985. PubMed ID: 30609247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic variations in the 3'-termini of Rice stripe virus in the rotation between vector insect and host plant.
    Zhao W; Xu Z; Zhang X; Yang M; Kang L; Liu R; Cui F
    New Phytol; 2018 Aug; 219(3):1085-1096. PubMed ID: 29882354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flotillin 2 Facilitates the Infection of a Plant Virus in the Gut of Insect Vector.
    Wang W; Qiao L; Lu H; Chen X; Wang X; Yu J; Zhu J; Xiao Y; Ma Y; Wu Y; Zhao W; Cui F
    J Virol; 2022 Apr; 96(7):e0214021. PubMed ID: 35254088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Splicing Landscape of Small Brown Planthopper and Different Response of JNK2 Isoforms to Rice Stripe Virus Infection.
    Tong L; Chen X; Wang W; Xiao Y; Yu J; Lu H; Cui F
    J Virol; 2022 Jan; 96(2):e0171521. PubMed ID: 34757837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insect cell line derived from the small brown planthopper supports replication of rice stripe virus, a tenuivirus.
    Ma Y; Wu W; Chen H; Liu Q; Jia D; Mao Q; Chen Q; Wu Z; Wei T
    J Gen Virol; 2013 Jun; 94(Pt 6):1421-1425. PubMed ID: 23468422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of protein-protein interactions between rice viruses and vector insects.
    Zhu J; Eid FE; Tong L; Zhao W; Wang W; Heath LS; Kang L; Cui F
    Insect Sci; 2021 Aug; 28(4):976-986. PubMed ID: 32537916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune function of an angiotensin-converting enzyme against Rice stripe virus infection in a vector insect.
    Wang X; Wang W; Zhang W; Li J; Cui F; Qiao L
    Virology; 2019 Jul; 533():137-144. PubMed ID: 31247402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants.
    Zhao W; Yang P; Kang L; Cui F
    New Phytol; 2016 Apr; 210(1):196-207. PubMed ID: 26585422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Plant Virus Ensures Viral Stability in the Hemolymph of Vector Insects through Suppressing Prophenoloxidase Activation.
    Chen X; Yu J; Wang W; Lu H; Kang L; Cui F
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of RNA Interference Pathways in the Insect Vector
    Xiao Y; Li Q; Wang W; Fu Y; Cui F
    Viruses; 2021 Aug; 13(8):. PubMed ID: 34452456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative detection of relative expression levels of the whole genome of Southern rice black-streaked dwarf virus and its replication in different hosts.
    He P; Liu JJ; He M; Wang ZC; Chen Z; Guo R; Correll JC; Yang S; Song BA
    Virol J; 2013 May; 10():136. PubMed ID: 23631705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination between terminal variation of the viral genome and insect microRNAs regulates rice stripe virus replication in insect vectors.
    Zhao W; Yu J; Jiang F; Wang W; Kang L; Cui F
    PLoS Pathog; 2021 Mar; 17(3):e1009424. PubMed ID: 33690727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptome Analysis of Chemoreception Organs of
    Li Y; Zhang Y; Xiang Y; Chen D; Hu J; Liu F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of Rice stripe virus in a transovarial transmission cycle during the development and reproduction of its vector, Laodelphax striatellus.
    Okuda M; Shiba T; Hirae M
    Virus Genes; 2017 Dec; 53(6):898-905. PubMed ID: 28589385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.
    Li J; Andika IB; Shen J; Lv Y; Ji Y; Sun L; Chen J
    PLoS One; 2013; 8(6):e66007. PubMed ID: 23776591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.